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DIFFRACTION OF LIGHT BY AN AMPLITUDE-MODULATED
ULTRASONIC WAVE AT NORMAL AND OBLIQUE INCIDENCE OF THE LIGHT

W. Hereman

communicated by R. Mertens

The intensities of the diffraction pattern of light in a liquid,
disturbed by an amplitude-modulated ultrasonic wave, have been cal-
culated on the hand of Raman-Nath's elementary theory. The results
obtained by Mertens are extended to the case of a multiple frequen-
cy transducer-output. The intensity expressions obtained here for
oblique incidence of the light beam, include interference cases
neglected by Aggarwal et al. Finally the symmetry of the various
types of diffraction lines is investigated : in the large wave-
length approximation the principal lines remain symmetric wi
respect to the zero order central line, but there is no longetr
symmetry of the satellite lines with respect to a principal ljne.

1. INTRODUCTION

Raman and Nagendra Nath [ 14,15] established their so-called "ele-
mentary theory' in order to calculate the amplitudes of the
diffracted electrical field traversing a liquid medium disturped

by an ordinary progressive ultrasonic wave (with large wavelength).
This method, based on the principles of geometrical optics, is
independent of the nature of the disturbing sound wave. So it] is
also applicable tc the case of diffraction of light by an ampli-

tude-modulated (AM) ultrasonic wave. Experimental research on that

topic has been done by Pancholy and Parthasarathy [ 1}, while more
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theoretical considerations can be find in papers of Aggarwal et al.
[1,2], Phariseau [ 11,12], Mertens [8,9] and Hereman and Mertens [5].
We refer to publication [9] for a survey of the other papers on this
phenomenon. All those authors considered an AM-wave only depending
on one modulation frequency and most of them have restricted their
treatment to normal incidence of the light beam.

In the first part of the present paper we generalize the most
recent results (obtained by Mertens [8,9] )to the case of a AM-
output with multiple frequencies. We obtain an intricate Bessel-
function expression which is valid at normal incidence of the light.
In the calculation of that expression for the intensities we have
taken into account the interference cases, not considered by Aggar-
wal et al. [1,2] . In the second part we treat the same problem,

this time for oblique incidence of the light beam. Furthermore we
have shown that the symmetry properties of the diffraction pattern,
as investigated by Mertens for normal incidence of the light [9],

are no longer fulfilled at oblique incidence of the light beam.

2. GENERAL AMPLITUDE-MODULATED (ULTRASONIC) WAVE

Consider an (ultrasonic) wave, with frequency V*= % and wave-
length A* = i—:l, travelling in the x-direction with constant ampli-

tude apy,
a sin(w® t-k*x+68) . M

This wave is said to be modulated when its amplitude, frequency or
phase constant ¢ is modified by an other wave. We shall not persue
the last two cases, which are nearly related and often called

frequency modulation (FM), but only treat amplitude modulation (AM)
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here. In the latter case the constant amplitude ay must be replaced

by

ay(1nS(x,1)) @)

where m is called the modulation depth and S(x,t) represents the
modulation wave. In the most simple case S(x,t) varies sinusoidally
in time (at given x) at the modulation pulsatance wq and sinusoi-

dally in space (at fixed time) with the modulation wavenumber k1 .

Hence, the amplitude-modulated wave

ao[ 1+mcos(w;t-k;x+61)]sin(m‘t—k*x-HS) , ‘ (3)
may be rewritten as

apsin(u’ t-K x+8) +Ja msinf (" +u) t- (Kek; ) x+5+6

+2 agmsinl (o ~u}) t- (K-K)x+6-8,1 ()

where 61 is a arbitrary phase constant of the modulating wave.

In all practical realizations, the modulation depth m < 1, the
modulation frequency v'.‘l = w; /2w is small compared to the carrier
frequency v* ; further a translation in time is introduced to
make 6§ = 0. The amplitude-modulated (almost sinusoidally travel-
ling) wave (4) is a superposition of a simple travelling wave
with pulsatance w" called the carrier wave and a sum of two travel-
ling waves with pulsatance ' +w’; (called the upper sideband) and
w —w} (called the lower sideband). In commercial AM we must take
into account [ 4] not just one modulation frequency but a whole
range of slightly different modulation frequencies \)’% ,\)"2,.. Vi
all small compared with the carrier frequency V*.

The AM-wave (4) may then be generalized to
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aOsin(w' t-k*xj + % j}—-:1 ajsin[ (w' +w})t- (x* +k3)x+6j]

1

i
J

+

Il ~12

1 ajsm[(w -wj)t—(k —kj)x-éj] 5 (%)

consisting of the carrier wave and a sum of travelling waves with
frequencies V' +\)3 in the upper sideband and\f-vg in the lower side-
band. aj and Gj (3=1,...,N) respectively are the constant amplitude
“and phase constant belonging to the pair of travelling waves with
frequencies v t\)}.

For technical comment on producing AM, bandwidth, bandpass filters

etc., we refer to specialized literature [ 10,16,17].

3. RAMAN-NATH'S ELEMENTARY THEORY FOR

NORMAL INCIDENCE OF LIGHT

In their first paper, Raman and Nagendra Nath [14] built up their
theory for the diffraction phenomenon of light by sound in a
liquid, at normal incidence of the light wave.

They considered a parallel beam of monochromatic light with wave
length X (in vacuum), circular wavenumber k = 27m/X and frequency
v = w/2m, traversing a homogeneous liquid medium over a distance
L. Putting the x-axis along the direction of propagation of the
ultrasonic wave and the z-axis (perpendicular to it) in the direc-
tion of the incident light beam, the incoming lightwave may be

written as
‘Yo(t) = exp(ikct) , (6)
while the outgoing diffracted lightwave can be expressed as

¥(x,L,t) = explik(ct-/e(x,t)L)] . @)
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Following Born and Wolf [ 3] we prefered the use of the relative per-
mittivity e(x,t) of the medium instead of the refractive index
u(x,t) of the liquid. The use of the relative permittivity e(x,t),
undergoing periodic fluctuations due to the ultrasonic wave, is
more in accordance with the physics of the problem. Furthermore it
presents no more difficulties in the mathematical treatment since

both are related by the simple expression
_ .2
e(x,t) = u'(x,t) . (®)

From the considerations of Section 1, the relative permittivity at

a point of the disturbed liquid medium is given by

e(x,t) = € * & sin(w* t-k*x)

+
| =

. osinf (0 +w}) t- (K +k%) x+6.
1sz+1SJLn[(m w3 ) T (K k5 )x+8,5]

+
™| =
. .

€549510 (& -u5) t- (K -k))x-65] )

Ne~12Z 2
—

where we have taken into account that the quartz crystal, produ-
cing the modulated ultrasonic field, has several slightly diffe-
rent modulation frequencies. €9 is the dielectric constant of

the medium in its undisturbed state, €1 the maximum variation of
the relative permittivity for the carrier wave, €j+1 (3=1,2,..,N)
the maximum variations for the travelling waves at frequency v*+v%.

J
Since €4,...,€ are always much smaller than e,, we approxima-
1 N+1 0 PP

tely have
1/2 il [
[e(x,t)] = /Ea g e sin(w t-K x)
)
1 N - * * * *
+ = jZ1 ejﬂsml(w +wj)t-(k +kj)x+6j]'
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1 ej”sin[(w*—w})t—(k*—k})x—éj] &)

Substituting this expression into (7) we obtain

-ikLe
¥(x,L,t) =exp(iut)exp(-ik/egl) expl— sin(y’ t-k'x)]
2 €0
N —ikLs:.+1
T expl—35 sin[(o"+w})t- (K" +k%)x+5.]}
j=1 4/e, J 77
N -ikLe.,
M expl—3"" sin[(0 -0f)t-(K*-k%)x-6.1} . (11)
j=1 42, : 7

Taking into account Jacobi's formula

-izsin® _ £y 4D in6
e = ¥ (-0 J (2)e 3 (12)

==00

the foregoing expression can be transformed into a product of abso-

lutely convergent series, and becomes after some rearrangements

¥(x,L,t) = exp(iwt) exp(-ik/e_OL)

iy KLe N kLe . kLe.
) L i 5 R W Y Q11
Ny Ny, = 0 2780 §=1 T23-1 4y 2] 4/ey
2N N
-7 + i S . _ . * t
exp{-il(n, jz1nj)w j; (an_1 nZJ)wJ] }
2N N
. 4 Ik + K
exp{il(n, jZ1nj) j; (ng5.17p) 51 x}
) N
exp{-l jZ1 (nzj_1-n23)6j} s (13)

wherein Jn(z) is the Besselfunction of the first kind of order n.

In order to give an interpretation of the diffracted lightwave
emerging at the boundary plane z = L, we shall change -the 2N+1

summation indices as follows :
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Putting

2N
£=ny,+ ) n., s
0 j=1 J
mj = an—1 - nZj (G=1,...,N) , (15)

we define in this way already N+1 new summation indices

LTy s e e Ty Consequently we have to choose another N summation
indices, among the given ones Ny 5Ty 5T e e Ty With regard to (15),
it seems justified to take L R the N remaining
summation indices, and to express 05N, ,0, 5«50y in terms of the
new indices 5L,m1 My se e sMhys Tyslgyeee Ty oo

On the hand of (14)-(15) it is immediately clear that

Ny = Mysq - mg G=1,...,N) , (16)
and

For notational convenience we put uj = an—1 (j=1,...,N), so that

we finally obtain as an equivalent form of (13),

Y(x,L,t) = exp(iwt) exp(—ik/sOL)
+oo kLe

; Ty —
Q;,m1 ’mN)a-| ’azya.- ’aN_—oo 9+ X (m__za.) 2}/8_0
j=1 J J
N kLe. €.
11 3 ety . iy

=Y My T e
N N
exp [-i(w"+ ] mng)t] exp[i(2k"+ }

m.k%)x]
j=1 j J ]

1
) N
exp[-i j; mjéj] . (18)

So it is clear that the lightwave is split into different subwaves.
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Each subwave represents a diffracted beam of light, making an angle

el’m g gl with the z-axis, given by
. L DY
sin® =o(gE tartar t ool t ) — (19
Q/,m1,...,HN A )\1 )\’i A /éa ’
and having the frequency-shift
Av = -(2v LV, VoF L vaN) ) (20)

R,,m1,...,mN

Since each subwave has a different direction (°) and a different
frequency-shift, it is meaningful to speak about a diffracted wave

of order (SL,m1 Mgy e ,mN) with the amplitude ¢2’m1 My, my
obtained from (18) :

+§° kL€1
o = J —h
LyMyyeeny o N

L N ga0g O gy (m-205) 2vey

j=1

; (kLej +1) ;5 (kLej +1))
o O, =T
1T 75 4/5:—0— i 4

€0

x(.
]

1=z

N
x exp(-i Z

; m;s;) (19)

1

The intensity of order (JL,m1 My s e ,mN) will then be given by

I (20)

=6 oy
JL,m1,...,mN Sl,m1,...,rr11\] £,m1,...,mN

where the asterisk stands for complex conjugation.

(°) We suppose the different frequencies v* sV »e VN to be
global incommensurable, which means here that

V" +m, VY :mzv'2+ . .;+mN\)?\I~= E\):+51 Vi +;12\)*2+ IV

iff 2 = 2, mj = m (Z,Z,mj,mj €2z, 3=1,...,N).
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So, finally we obtain

I -
Z,m1,...,mN
+00 +o0 kLe
J N (
a]’OLZ""GN__w B‘]’BZ""BN_—OO 2+ z (m.—ZOL-) 2
52109
xJ N (2
o+ ) (m:-28.)
j=1 J J
N kLe.
x[ I J (—__!leJa g
j=1 7 4ﬁi§ 3] 4/55
kLe. kle.
« 3, Ly, L en
j Mgy TiTT 4y

1y
ey
kLe

1
o9

From the formulae (19) and (20) it is seen that the direction of
the diffraction lines and the corresponding frequency-shift
generally depend on the carrier frequency and all the other modu-
lation frequencies.

Formy =m, = ... =my = 0 we find for each value of & diffrac-
tion lines having the same directions and frequencies as in the
case where the ultrasonic is not modulated [ 7], but with diffe-
rent intensities [6]. We shall call them "principal lines'".

In the case where m,Mm,y, ... M are not equal to zero altogether,
we may vary those indices for each fixed value of &, so that for

each principal line, associated ''satellite lines' are observed.

Now we pay attention to the special case N = 1, where only one
modulation frequency vﬁ acts upon the carrier wave.
In that simplified case we obtain diffraction lines of order

(2,m1), defined by the direction

m
sineg 5 = —C{%—+ 7;)_5_ s (23)
my W
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with frequency-shift
Avy = = (VM) 24

and having the intensity (of order (2,m1))

+z°° kLz—:1 kLz~:1
I = Jogr 9y T _on | )
R B it B P Y
kLe2 kLe2 kLe:2 kLe2
I, DI, L DI, Jg D)
14/&% 1 14/?-:'6 14/3? 1 14/&%
(25)
Putting
2+m1-2a1 =p
s (26)
5L+m1—281 =q
from which
JL+m‘—p 2—m1-p
% =72 s s T A 27
2+m1—q l—m1—q
bpt=—g— » By =3
it is clear that (25) is equivalent to
+z°° +§° kLe’:1 kLe1
I = J_( )J_( )
%1, L,my == p,q=-e P 2/ey 1 2/e,
both even T e
orodde“m_ ( 2) 5L+m—( 2)
17P LN 174 N
2 -2
kLs2 kLe2
xJ, __(—)J, _(—3 . (28)
MP ey Mgy
2

Remark that o and 61 being integers, J?,+m1 (or 5L-m1) and p (resp.
q) must be both even or both odd. Consequently the summation

indices p and q must be even or odd at the same time.
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On the one side, this result is in accordance to the intensity
expression derivable from the generalized Raman-Nath theory in the

special case p = 0 (long wavelength approximation) [5, paragraph 5] .

On the other hand, up to some trivial modifications, (28) corres-
ponds to the intensity formulae obtained by Mertens [9, Eq.(11)].
In that paper a discussion of the diffraction pattern, concerning
the symmetry and the relative intensities of the diffraction lines,
can be found.

Before extending these considerations to the case of N modulation
frequencies, we generalize the foregoing results to the case of

oblique incidence of the light.

4. RAMAN-NATH'S ELEMENTARY THEORY FOR OBLIQUE

INCIDENCE OF LIGHT

In a second paper [ 15] Raman and Nagendra Nath extended their
elementary theory to the case of oblique incidence of the light
beam. They proved that the optical length of a path in the medium
between z=0 and z=L and parallel to the direction of the incident

light (making this time an angle ¢ with the z-axis) is equal to

Lsecy

[0,Lsece] = [ Ve(s)ds , (29)
0

where €(s) = e(x-ssinv,t) is the periodic relative permittivity of
the considered medium. Once the integral (29) is calculated, the
diffracted lightwave coming out in the boundary plane z=L, may be

represented by

Y(x,L,t) = exp{ik(ct-xsiny-[ 0,Lsecy] )} . (30)
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Although it is possible to consider from the beginning a trans-
ducer with an AM-output consisting of N modulation frequencies, we
confine the treatment for the sake of notational simplicity to the
case of only one modulation frequency \)’;. The generalization of

the results will go without saying. Employing (10) (for N=1) we get
[0,Lsecy] = fe'aLsecw + A1sin(w‘ t-k*x) - BTCOS(w*t-k*X)
+ Azsin[(m'+m‘1)t-(k‘ +k’;)x] - Bzcos[(w‘ +w'1)t-(k‘ +k‘1)x+61]

+ ASSJ‘.n[(w' —w’;)t-(k‘ —k‘1)x] - B3cos[(w' —w’1)t-(k’ —kﬁ)x—61]

(3M
. .1 5 1 NP
with A, = > — —— sin(k’Ltany)
f—o k* sing (32)
B, =% b [cos (K* Ltany)-1] ,
/t»% k" siny

and wherein AZ’ B2 respectively A,, B:,) stand for analogous expres-
sions where e, is replaced by 32/2 and k* respectively by k* +k"1
and k* -k‘1. It is straightforward to verify that the optical length

can be rewritten as

€ * *
[0,Lsecs] = VEgLsecy + ———sin(IEE®)sin(y t-kex + K172
0 . 2 2
Eo S1ny

€, (k* +k7) Ltany

+ sinf 5 Isinf (" +w;)t— (x* +1<§)x+(‘s1
2/, (K +K7)sing
x +k'1 )Ltane
+

& (k* -k‘1 )Ltany

+ sin[ i ] sin] (o -w) t- (K -k7)x-64

Zv’s:_a(k* -k'1 )sing

(x* —k‘1 )Ltany

pilamne e % (33)

Substituting this final expression into (30) and using the
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Jacobi expansion (12), we obtain after some trivial operations

Y(x,L,t) = exp(iwt) exp[—ik(xsinw/eol,sew)]

* (‘kt +k‘ )Lta.n‘ﬂ
400 ke sin(k__l_'@?_n_“’) ke, sin[ ___l___]
7 I 1 2 191 2 2 ]
= n * _ - n x % .
Ny 5Ny sN)= 0 /eok sing 1 2/60(1( +k1)51mp

S —kf] )Ltane
kezsm[ —] :

xJ
n 2/, (K" -k} )siny

x exp{-1i [(n0+n1+n2)w* +(n1 —nz)m”i] t}
xexp{+i[(n,ny +n2)k‘ +(n, —nz)k;] x}

xexp{-i [(n1 —nz) 61+(n0+n1+n2)k1‘$

kﬁLtan‘p
+ (n1—n2)—7~]} . (34)

According to (14) and (15) we put

(35)
m = ng-n,
from which it follows that
n, = n,-m
2 1 (36)
no = 5L+m1—2n1 .

Hence, the diffracted lightwave in the case of oblique incidence

of 1light becomes
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+§o 1<z’:1 sin(%k‘ Ltany)
¥(x,L,t) = | ]
LMy 50y =-o0 fAm,~20, /eok‘simp

1

ke, sin[-L(k*+k®) Ltane] ke, sin[+(k* k) Ltane]
g 27 1 13 S i | 1 }
% 2/, (K" +k}) siny oyl 2/, (K" -k})sing

xexp(iwt) exp [-ik(xsin¢+/e_0Lsec¢)]
X exp [—i(m‘+m1w§)t]
X exp [i(SLk'+m1k;)x]

x exp [-1(m &, +3%KLtang + Im K Ltane)] (37)

built up of subwaves of order (Z,m1) with direction

sing, =sin«p—(>\—9;+f;‘—1—)l , (38)
>y 1 /e,

0
frequency-shift (24) as in the case of normal incidence of the light,

but with more complicated intensities

+oo0 ke sin(lk‘ Ltany)
O [ Y e i i
oy o, 8= 7% Vegk'sine

ke sin(1 * Ltany) ke, sin[ 1(1("+k")Ltam‘p]
1 P S el )
1 1

xJ [

P28 Ve sine U 2/E (K +K;)sing
. 1 * * - 1 * *
. [kszsm[-z-(k +k1)Lt3.an]1J kezsm[z-(k —1(1)Ltamp]1

1 -
1 e kpsine ™M 2785 (K K )sing

- Trs g0 )
kezsm[ 7(k -k1)Ltamo] .

x J (39)

By-my 2/25 (K" -k} ) sine

It is easy to show that this result is equivalent to the result

already found as a special case of the generalized Raman-Nath theory
[5, Eq.(52)].
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We also remark that it is possible to obtain the intensities (25)
corresponding to normal incidence of light, from (39) as a limit
for ¢ tending to zero. Furthermore comparing the results (25) and

(39) it is clear that

+co +oo
I (0) = ) )
'Q/,m s yerey =—co =-0c0
1°M2 ™ Qs eess Oy Bl,BZ,...,BN
ke, sin (%k* Ltany) ke;sin (%k* Ltany)
Iy 17y ]
2+ ) (mi-20.) Vegk" sing g+ ¥ (m.-28.) VEgk" sing
j=1 J ) =1 J ]
. % 1 * * 5 1 * *
i I;I[ p [kej+151n[7(k +kj)Ltan<p]}J [kej+151n [—2—(k —kj)Ltanq:]}
=% 2/E K G sing 5T 2/E (K -K])sing
- 1 * * - 1 * *
5 [kej+151n [-Z—(k +kj)Ltan«p] » ksjﬂsm [7(k —kj)Ltancp] ')
SEEYCNS +< ) sine By-m; 2/ (" -K})sing

(40)
will be the intensity of order (2,m1,.. .,mN) (in the case of
oblique incidence) when the AM-output contains N modulation

frequencies.

Anyhow we get expressions for the intensities different from those
obtained by Aggarwal et al. [1,2] . Those authors considered any
line of the diffraction pattern as the consequence of one single
subwave, part of (9), and excluded all possible interference.

A further investigation of this point of discussion and of the
relative intensities of the various types of lines is given by

Mertens [9] .
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5. SYMMETRY PROPERTIES OF THE DIFFRACTION SPECTRA

In this final section we investigate the symmetry properties of
the diffraction spectrum for normal incidence as well as for
oblique incidence of the light.

Following Mertens [9] we consider symmetry of the principal lines
with respect to the zero-order central line, by changing £ into -2

J
sumation indices aj, Bj by their opposites and making repeatedly

and m. into ‘-mj (j=1,...,N) in the formula (40). Replacing the

use of the property of the Besselfunctions

J_(@) = (-0 ), (a1

we obtain that

(¥) (o) . (42)

I-1&,-m1,—m2,...,—mN = IJL,m1 ,mz,...,mN
We thus may conclude that even for oblique incidence of light the
whole diffraction spectrum is symmetric with respect to the zero-
order line (2=mj=0, j=1,...,N). Of course this satement is only

valid in the long wavelength approximation (p=0) treated here [5].

Regarding the invariance of all the Besselfunctions in (40) for the

transformation ¢ + -y, another property may be obtained :

Iz,m1,...,nN(“”) = IIL,mP...,mN(‘p) ’ (43)

which signifies that the diffraction spectrum remains invariant,
if the angle ¢ between the direction of the incident light beam
and the z-axis is reversed (see also [ 13]).

In order to investigate the symmetry of the satellite lines with

th

respect to the corresponding £ order principal line, it seems

better to use another equivalent form of the intensities as a
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generalization of (28), instead of (25). Putting

2+(m.-20.)N = p. 44
(m;-20,)N = p; , (44)
24 (my-28,N = q; (=1, .80 (45)
we find that
L+ (m.-2a.) = = P- > (46)
j=1 J ] N =1 J
2+Nm.. -p..
= J ]
2 R (47)
2~Nm. -p..
m. = — 3 3
®5-m; N 3 (48)
and analogous formulae relating Bj and qj.
In the transformed expression of the intensities
+oo “+o0
I (o) = )
R”m y'eeiey =—00 =—00
1200 00TN P1sPyse v+ sBN== Qy»dys-- -y
ke,sin (3’ Ltane) ke,sin(5k" Ltany)
J [ 1J [ ]
1 I;: »/eok'sinw 1 N /sok*sinsa
N1 Pj N.L.95
=1 3=1
| *
i I;II 5 [kej+151n(-2—U<'+kj)Ltan~p)]
j=1 ¥Nm-p; 2/24 (0 +K] ) sine
2N
T ox
. [kej+151n(-z(k —kJ.)Ltan‘.o)1
Z_ij P 2/e, x* —k} )sine
e
. 1 * *
. [kej+1sm(7(k +kj)Ltan¢)]
PSP 2/, (KK ) sin v
N 0= I
S
ke. ,sin(w(k -k.)Ltany
x J (31 inzk ) )}} : (49)
4-Nm,-p, 2/g, (K -K)sing

N
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the summation indices pj and qj should be taken so that

24Nm. -p.. 24Nm. ~q
213[ J and 2131 J remain integers. On the hand of (49) it is

very easy to see that

I =1
JL,nH,...,—mi,...,mI\I(‘p) 9.,m1,...,mi,...,ml\1(‘p)

i=1,2,...,N , (50)
iff ¢ = 0.
Consequently one ore more summation indices may be replaced by
their opposite, from which we may conclude that at normal inci-
dence of the light the intensity of the satellite lines is symme-
tric with respect to a corresponding principal line.
At oblique incidence of the light, this symmetry property will no

longer hold.
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