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Summary

The acousto-optic interaction of an intense laser-light beam with an ultrasonic wave in a liquid
is studied theoretically. Starting from Maxwell’s equations, a multiple space-time scale formalism
is used which incorporates both the electromagnetic nonlinearities and the ultrasonic disturbance
of the liquid. As in nonlinear optics, the inclusion of a third-order polarization leads to a set of
nonlinear coupled wave equations, but with periodically varying coefficients due to the ultra-
sonic influence. The amplitudes of the fundamental and the third harmonic are coupled. In the
case of large ultrasonic wavelengths this set of nonlinear equations can be solved exactly. Using
the generating function method, the intensities of the diffracted spectrum are computed in closed
form. This spectrum consists of two types of lines: ordinary lines, as with diffraction of lower-
intensity light, and intermediate lines, due to third harmonic generation in the liquid. In contrast
with earlier work, the sum of the intensities of all the diffraction lines exactly equals the intensity
of the incident light beam.

Alusto-optische Beugung intensiven Laserlichtes in einer Fliissigkeit

Zusammenfassung

Die akusto-optische Wechselwirkung eines starken Laserstrahls mit einer Ultraschallwelle in
einer Flissigkeit wird theoretisch untersucht. Die Maxwellschen Gleichungen werden als Aus-
gangspunkt genommen, und ein vielfach Raum-Zeit-Skala-Formalismus wird eingefiithrt, der die
elektromagnetischen Nichtlinearitidten und die Ultraschallstorung in der Flissigkeit umfaft. Wie
in der nichtlinearen Optik fiithrt die EinschlieBung einer Polarisation dritter Ordnung zu einem
System von nichtlinearen gekoppelten Wellengleichungen, die jedoch aufgrund des Einflusses
des Ultraschalls periodische Koeffizienten besitzen. Die Amplituden des Grundtons und des zwei-
ten Obertons der Lichtwelle sind gekoppelt. Im Falle groferer Ultraschallwellenlingen ist das
System nichtlinearer Gleichungen exakt I6sbar. Unter Anwendung der Methode der erzeugenden
Funktion lassen sich die Intensitidten des Beugungsspektrums in geschlossener Form berechnen.
Dieses Spektrum besteht aus zwei Typen von Linien: gewohnliche Linien, wie bei der Beugung
des Lichtes mit schwacher Intensitit, und Zwischenlinien, herbeigefiihrt durch die in der Flissig-
keit erzeugten dritten Harmonischen. Im Gegensatz zu fritheren Arbeiten ist die Summe der In-
tensitéiten aller gebeugten Linien vollkommen gleich der Intensitit des einfallenden Lichtes.

Diffraction acousto-optique d’une lumiére laser intense a Uintériewr d’un liquide

Sommaire

On fait la théorie de 'inter-action acousto-optique d’un faisceau intense de lumiére laser avec
un liquide. Partant des équations de Maxwell, on y introduit un formalisme & échelles multiples
dans I’espace-temps, ce qui permet de traiter aussi bien les non-linéarités électromagnétiques que
la perturbation ultrasonore du liquide traversé. Comme en optique non-linéaire, 'inclusion d’une
polarisation du troisiéme ordre méne a un systéme d’équations d’onde non-linéaires couplées,
mais ici avec des coefficients qui varient périodiquement sous I'influence des ultrasons. L’amplitude
de I’onde fondamentale est couplée & celle du troisiéme harmonique. Dans le cas des ultrasons de
plus grandes longueurs d’onde, ce systéme d’équations non-linéaires peut éte résolu exactement.
La méthode de la fonction génératrice fournit les intensités du spectre diffracté en formules finies.
Ce spectre se compose de deux types de raies: les raies ordinaires qui sont celles de la diffraction
de la lumiére aux faibles intensités et les raies intermédiaires qui proviennent de la génération
d’un troisiéme harmonique dans le liquide. En contraste avec des travaux antérieurs, la somme
des intensités dans le spectre diffracté est ici égale exactement & 'intensité du faisceau incident.
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1. Introduction

The diffraction of ordinary light by an ultra-
sonic wave in a liquid has been well explained by
the so-called Raman-Nath theory [1]. In this
theory, a monochromatic light beam traverses a
liquid column, the permittivity of which varies
periodically but with a sufficiently low frequency.
The light beam is scattered into many spectral
harmonic components due to both Doppler shifts
and deflection. For the well-separated lines of this
diffraction pattern, it is possible to determine the
directions, frequencies and intensities [2], [3]. Up
to now this kind of diffraction phenomena has been
studied quite extensively, from a theoretical [4],
[5]. [6] as well as from an experimental point of
view [7], [8]. Recent and important fields of ap-
plication are the study of optical image-forming
systems [9], [10], acoustical holography [11],
acousto-optical light modulation (8], [12] and de-
flectors [8], [13].

In many of these recent experiments one needs to
use strong laser-light beams, but then the intensity
of the electric field is so high that besides the
acousto-optic interactions several nonlinear effects
may occur. Such experiments [14], [15], as well as
theoretical arguments from nonlinear optics [16],
[17], [18], show that the nonlinear terms in the
polarization are no longer negligible and cause e.g.
the well-known optical harmonic generation. Due
to symmetry properties of isotropic media (in
particular a liquid), the term containing the
fourth-rank susceptibility tensor is the first im-
portant term in the nonlinear polarization. The
corresponding third harmonic generation (THG)
has been demonstrated first by Terhune et al. [19]
for calcite crystals and by Goldberg and Schuur [20]
for a liquid medium (in particular a liquid crystal).
Such a THG shows up also in the acousto-optical
diffraction of an intense laser-light beam [21], [22],
with a pattern consisting of two types of lines, in
contrast with the spectrum for ordinary light when
diffracted by a simple progressive ultrasonic wave.
Besides the ordinary diffraction lines, at the same
places as if the medium were linear, one observes
[14], [15] intermediate lines due to THG in the
acousto-optical interaction region (see paragraph 4).
Several theoretical attempts to explain this experi-
mental result have been made, which were reviewed
by Kosmol and Sliwinski [15]. Although they ex-
plain the observed diffraction pattern, none of
these theoretical investigations are really satis-
factory concerning the calculations of the inten-
sities.

ACUSTICA
Vol. 48 (1981)

The purpose of the present paper is to present a
new approach which relates the theory of THG,
established by Bloembergen and coworkers [23], to
the generalized Raman-Nath theory for the diffrac-
tion of light by ultrasonic waves, recently reviewed
by Mertens et al. [24]. Since both these theories
start from Maxwell’s equations, a global approach
is possible, combining different but reconcilable
approximations.

In paragraph 2 this is done, using a multiple
space-time scale formalism, which is already im-
plicit in both the THG and Raman-Nath theories.
In this way special attention is paid to the compa-
rison and relative importance of various small
effects in the derivation of the basic equations. A
coupled system of first-order but nonlinear PDEs is
thus obtained, relating the amplitudes of the
fundamental and the third harmonic light waves.
This system contains coefficients, which vary
slowly in a periodic way due to the ultrasonic in-
fluence on the liquid.

The exact integration of this set of coupled
equations is performed in paragraph 3, and up to
this stage the explicit form of the linear and non-
linear susceptibilities is not required. For the cal-
culation in paragraph 4 of the intensities of the
diffraction pattern, in the case of a progressive
ultrasonic, however, the explicit form of the dis-
turbing wave pattern must be known. In order to
apply the generating function method (GFM),
established by Hereman and Mertens [25], the non-
linear susceptibility should be constant.

In contrast with previous approaches, the sum of
the calculated intensities of the various lines of the
diffraction spectrum is exactly equal to the inten-
sity of the incident light beam. Finally, a review of
the earlier theoretical treatments of this problem in
comparison to the present approach has been made
in paragraph 5.

2. Basic equations

The inclusion of nonlinear effects in the treat-
ment of electro-magnetic wave propagation through
media, which are disturbed by ultrasonic waves,
requires a consistent derivation of the basic equa-
tions, as many different physical approximations
are involved. Hence one starts from Maxwell’s
equations without source terms, written in SI
units:

oB
VxE+ —4:0, V‘B:O>
ot
0
vxn- Lo vpoo.
ot



ACUSTICA
Yol. 48 (1981)

Here E and H represent the electric and magnetic
fields, whereas D and B are the electric displace-
ment and magnetic induction, characteristic for the
medium under consideration. For the applications
we have i mind, the magnetic effects are not
important. So we can simply, as in vacuum, replace
B by uoH and eliminate these magnetic quantities
from eq. (1) to get a wave equation of the general
form
o2

e P =, @)

/ E
V X (VX E)4+ po 7o

Mo is the magnetic permeability coefficient in va-
cuum, and we will use gy to denote the dielectric
constant in vacuum. These quantities are related to
the vacuum velocity of light ¢ through eopuoc2=1.
For eq. (2) to be a true wave equation, a relationship
between D and E must be given. As we want to
include some nonlinear effects, we put in a general
way

D =¢o(1 + y.+ xnLE?) E, 3)

where y1, and yn1, respectively stand for the sus-
ceptibilities, appearing in the linear and nonlinear
polarizations of the medium. In general, such sus-
ceptibilities would be operators in tensorial form,
which for isotropic media reduce to scalar opera-
tors. Even though the liquid is disturbed by an
ultrasonic wave, which propagates in a given
physical direction, we will for simplicity assume
that this liquid acts as an isotropic medium. Fur-
thermore, the effect of y1, and ynr, on E is supposed
to be independent of the frequencies of the incident
light, so that yy, and yn1, are scalar functions.
Substitution of eq. (3) into eq. (2) yields

VV-E — V2E x
N + 2 o2
(0 + 71+ B2 E] =0, @)

together with the condition
V-[(1+ yr + xwi E?) E] =0. (5)

Basically, there are two series of effects in the per-
turbation of the medium. One is the change in
dielectric properties due to the presence of ultra-
sonic waves, and on its own this would lead to
various forms of the Raman-Nath theory. The
other effects arise from the nonlinearity of the
medium, which has to be taken into account when
dealing with intense laser-light, and this on its own
would give THG in nonlinear optics. Clearly, both
these effects must be comparable in a combined
study. otherwise one is reduced to one of either
limiting case. We thus adopt the following ordering
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scheme, which includes a multiple space-time
formalism [26]:

V=Vo+ Vit

) 0 0

A T T

E=Ey+¢eE + -, (6)
AL =0 +&x1+ -,
ANL=¢€X3+ """

Here ro=r and fp=1 represent the fast space and
time-scales on which the electromagnetic waves
vary in phase, whereas ri =e¢r and ¢ = ¢t are the
slow scales, on which the wave amplitudes will vary
as a result of the presence of the ultrasonic wave
and the THG. The various effects are of the same
order in ¢, characterized essentially by the non-
linear susceptibility. It will be seen later on the
resulting equations, that the ordering in eq. (6)
leads in the absence of nonlinear effects to the
Raman-Nath regime in the usual theories of the
diffraction of light by ultrasonic waves [27], [28].

Upon substitution of eq. (6) into eq. (4) one gets,
after equating all terms of the same order in ¢, the
set of equations:

LEy=0,

2 %3
LE1 — 1_4'_’%0* V()(E()E()ZV()E()) (7)

2V, ViE, + XL O g

—2Vo:-V1Ey+ —5 =5 Eo
2 o

7w O 1+x0 02

4 (BB At e e

o og FoEo) +2—5" o, Bo 0,

where use has already been made of the conditions
derived from eq. (5):

Vo Eo=0,
13 2
“E1 4 Vi-Eg+ - Ey-VoE; =0,

Vo E1+ Vi o+1+movoo 0, (8)
and the linear operator L has been defined as

. L1ty @

L=—Vo+———5.
0+ c2 atg (9)

The set (7) contains all the information required, if
we specify how y; and y3 vary with space and time.
If the ultrasonic wave propagates in the z-direction
with a velocity c¢* (starred quantities refer to the
ultrasonic wave), y; and y3 can at most depend
upon x; — c¢*t;, because the variations in the ultra-
sonic waves are slow compared to those in the elec-
tromagnetic waves. This again is equivalent to the
generalized Raman-Nath theory [1], [24]. The
explicit form of y; and y3 is not yet needed, and a
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further discussion will be postponed until para-
graph 4.

3. Third harmonic generation

It is now time to specify the form of E;, the
electric field inside the medium in lowest approxi-
mation. We take a linearly polarized light wave
which propagates in the z-direction in lowest
approximation :

E() = Eoey,
Bo=13141(z1, 21 —c*t1) exp(ig)
+ $As(z1, 21 — c*t1) exp(3ig) + c.c.,

(p:kZ()—a)to. (10)

Eqy contains a fundamental laser-light wave with
amplitude 4; and its third harmonic with ampli-
tude Ag. Outside the liquid, only the fundamental
is present; the third harmonic is generated inside
the liquid viewed as anonlinear dielectricum. Hence
at the plane of incidence:

A1(0, 21 — c* ) = Ao,

A3(0,x1—c*t1):0. (11)

Furthermore, 4; and A4z vary slowly with the
penetration depth inside the liquid, as well as with
the slow periodic disturbance of the medium
through ultrasonic waves. The complex conjugate
in eq. (10) is necessary, as we are dealing with non-
linear equations, in which Ej is thus introduced as
a real quantity from the outset. Substitution of
eq. (10) into the first equation eq. (7) yields the
dispersion law for the electromagnetic waves in the
liquid:

(12)
With the choice of Ej given in eq. (10), the term

EyEy: VoE, vanishes, and the second equation (7)
becomes, after projection on the y-axis:

04, w2 14 70
—1 i s s DU AY e T
LE1—I—{ ik oo = 7141 +iw 2 C .
. aA3 9 w? X 1} %0
+ { — 8ik o~ — g aids + 3o — ;5o
75 w2 147 2

13(Af s + A A exp (5ig) — -

8¢c?
where E1=Ejey; the bar signifies complex con-
jugation. E; will only contain information about
harmonics higher than the third, if the slow varia-
tion of 41 and A3 with z; is such that
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. (‘)/I}
81(1 -+ yo) & + 4k g1 Ay
+ 3k x3 (r.ff) A 3 *J," A%/Il + 2A1A31‘I3) =0 5

. 04
8i(1 + xo) -

+ 3k Xg(/‘f 4 6A1A'1A3 -+ 3A§fi3) =0.

2 12k g1 As

oy (14)

Those equations, obtained by putting equal to zero
the coefficients of exp (i) and exp (3ip) in eq. (13),
avoid the appearance of secular terms in £y, con-
nected with the fundamental and the third har-
monic.

Terms with a factor ¢*/e, which is always a small
parameter, have been neglected. With the sub-
stitution

3 kys
="

2 15
e (15)

eq. (14) becomes

0y ML A Ayt AP+ 24 A5 )
o P 1 7 A3 141 14343),
04 4 ‘ i _
S8 R gy i(AD 4 64, Ay Ay 3A2As).
or 23

(16)

The structure of these equations is such that if we
put

4y,
Ay =Z1(l)exp i 3, 1,
. 9 X3

A
As = Z3({) exp (i £y (17)
X3
eq. (16) reduces to
le 72 1 72 7 7 7
& (i 2y V- 2520 221 Z3 73)
dzs . 5 5
dz g l(’//l' 62417123 -+ 3Z§Z3) . (18)
3 w? . o - = .
— g X8 (Af Ay ATAL 241 A3 A3) pexp (i)
9w? 3 - 0 T 5
s 8(‘3 Z:J(‘/I'I, }- ()5’11"111‘13 -+ 3A3A3) exp (31(p)
2 3 81 (!)z 3 .
~ysd1 A5 exp (Tig) — 5a y3Adzexp(9ig) 4 c.c. =0,
N (13)
In order to get real equations, we write
Ziy = prexp(iog), Zg=pzexp(ias), (19)

and split eq. (18) into its real and imaginary
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(]Ql 2 s
(]: :QIQ3SIH1P7
dos 5 .
d: = — 018y,
doy 5 5
ac —rescosy +er+2¢s,
dog 3 =4 ) 2 ¢
a: = 0705 cosy+ 6p7 + 303, (20)

where y stands for 3oy —ag. From the last two
eqs. (20) one deduces

(h/l 9 2
I = o 05 (305 —ol)cosy — 307 +3p5. (21)
The set (20) admits two invariants:
2 2 2
01 1 03 = 00>
oioscosy = (o1 + 03) + 7, (22)

where o and y are integration constants.

In view of the boundary conditions (11), and
keeping the transformations (17) and (19) in mind,
we find that

05 = 01(0) = Z1(0) Z1(0)

= A 1 (0, X1 — c* tl)A]_(O, X1 — c* t])

- Agdy. (23)
The second invariant (22) can be reduced to
vioscosy = — 3070} (24)

With the help of the invariants (22) one gets instead
of eq. (20) a single differential equation of the form

du

a- + Vi (),

if we put for simplicity « instead of pf, and where
f(u) = u2 (0§ — ) (13u — 903). (26)

The function f(u) is negative everywhere, except
in the interval [905/13, 05]. Hence u will oscillate
between these two values 903/13 and of in a periodic
way. This is borne out by the integration of eq. (25),
which gives

(25)

900
el S 27
11— 2cos (3020) (27)

Returning to the original variables we have

90p
”l 9k7 72 7,
11— 2cos|- QoxNIiz
8+ 8x0
9k 0§ xvt.
1 — cos 81 8-r~z
202 Tt . 38 By 28)

9k 02 yx
11 2(:0S( g XI\IEZ)
8+ 8x0
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The period in which the situation would repeat
itself spatially in the z-direction is

(29)

Once the moduli p; and pz are known, the inte-
gration of «; and «g follows from the last two eqs.
(20) as

3kog
4 =5 ig s+ BE +oa(0)
9k 0§ g
3= 8+ 8y 3B(2) + 3(0) (30)
if we put
B(z) = 1/1:3 arctan [3~ - tan (16 +16‘}{roz) :
(31)

Returning now to eq. (17), we have that

kg xwr

9 -1/2
= ¢ Y
Aq ‘3@01‘9+4sm(16+16x0z)}

.} k(. — xo0)
-exp [1{—5—;22{0"44»0(1(@) 5
9k gf xxr.

-1/2
. in2 | S~ TS0AR
{9+4sm (16+16x0 z)}

. J 3k(xL — x0)
- exp [1{‘"?—}72“)‘ -z + 013(2)}] -

(32)

It is worth noting that we succeeded in determining
A7 and A3 without having to specify the functional
dependence of y1, and yn1, upon @1 — ¢*#;. This will
be done in the next section, in order to arrive at the
generator description of the diffracted light pattern.

4. Ditfraction speetrum

We consider the linear susceptibility of the
medium to be modulated by a simple progressive
ultrasonic wave,

g1 — zo = Ssin(k*x — w*1), (33)

where the slow variation is incorporated in k* <k
and o* <€ o, and such that

w*

o (34)

¥ ==
In practice the magnitude of the susceptibility ynt,
is so small that only strong laser-light sources are
sufficiently intense to visualize any THG at all.
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Consequently, the influence of the disturbing wave
on yy1 may be ignored and henceforth yyt, will be
treated as a constant.

Introducing eq. (33) into the explicit solution (32),
it is easy to see that we can immediately apply the
following formula of Jacobi [29]

elésing — zeinOJn(é:)’ (35)
which can be used to generate the Bessel functions
Jn (&) of order n. Thus we obtain from (32):

A1 =300 { 9 -+ 4 sin? (ékiglx;;oz) }—1/2 -
m:f_:ozim<k*x_wmjm<2_:3;7(;) .
and
.A3 =200 sin( 1()616-5(2)17?;;'2)
.{9 44 sin? (%%%«iz) }—1/2

. eiazs —Eo ein(k“:c—w*t) J" ( 3k82 )
o 24290

n

(37)

Such a manipulation of the solution (32) is possible
just because we are working in the Raman-Nath
limit.

The interpretation of the diffraction spectrum
can be given when we substitute eqs. (36) and (37)
into the electric field (10):
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It becomes obvious that the ultrasonic liquid
column acts as a diffraction grating for the incident
(laser) light wave. The original plane wave is split
into a spectrum of plane sub-waves of two types:

4.1. Ordinary diffraction lines (of order m, m € Z)

These diffraction lines are found at the same
position as they would in a linear medium, when
ordinary instead of intense laser-light is used, but
of course their intensities will be different. Each
spectral component of order m is characterized by a
frequency-shift

Awpy = — ma* (40)

and a deflection angle 0, with the positive z-axis,
given by

(41)

im0 42
(— ) m 9 *_ 9 X0 ( )
Furthermore, these diffraction lines have a z-

dependent phase-shift «;, which is not important
for the calculation of the intensities but could be
used to obtain a further refinement in the deter-
mination of the deflection angles 0,,.

g 9% 05 g =
_ 3 in2f —S0ANL
Ey(x,z,1) =23 90{9+4s1n <16+16xo 2
- (— l)me(m%) expli{kz —mk*x — (0 — mw*)t + o1 (2)}]
L= 9k 0§ g 9k vt \| M2
: L in2 VAR
+n=z_°§0 Sln(16+16x02 9 + 4 sin 16+16x02 }
(— 1)nJ ( 2kos ) [i{3kz — nk*e — (3 )1+ ag (@)} + 38
(— — | exp[i z—nk*x — —nw*)t -+ ag(z .C.
"\2 250 p w Q) o3 c (38)
or
= Dkedrnn |
— i | —— S9ATT
Eo(x,2,t) "222_390{9+4sm (16+16xoz

. _lme —

O
2

+ > 200

. 1\ J _3]678'2

(_ ) n 2+2X0

)cos[kz—mk*x— (w0 —mo*)t + o1 ()]

kg5 xnw

9]60%%1\11_, 9 —1/2
3 = s mn2f — =2
Sm(lﬁ—l-lﬁxo z)]{Q—I—fIsm (16—|—16x0 z)}

*) cos[3kz —nk*x — Bw —nw*)t + az(2)]. (39)

S
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1.2 Intermediale diffraction lines (of order n/3,
ne /)

Such lines do not oceur in the diffraction pattern
for an ordinary licht beam, because they are due to
THG in the acousto-optical interaction region. The
frequency-shifts of these lines are given by

n

h\w,, '3 9 m* N (4:3)

with deflections determined by
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onXNL ~ 12
9 el
{9+4sm (16 16 10 )}

g [ 3kdz
(s )

A similar remark could be made about the z-
dependent phase-shift a3. For n/3 =m, these inter-
mediate lines have the same directions as the
ordinary lines, and hence give a contribution to the
intensities of these lines as well. With now the
complete definition of the intensities of ordinary

n ke
e Sk (44)  and intermediate lines given by
and amplitudes In= w(l) (pﬂ) + q)(?,) 99(3) (nez), (46)
| ; . )
(8) 9 i) ( QkQOXNL In/3*¢n/3(}9n/3 (neZ, n/3¢Z)’
Puis =00 S 16 1640 we finally obtain
9 /"( S 142, ( Bkoz ) . ( 9% 05 N1 )
9.J? A sin2 -2
] 5 i 2-+—2x0 2+2X0) 16+16x() -/
B 9k o5 Nt ’
o i
9+4m1“6+mm)) (neZ)
; __,l_,( 3k oz ; ( 9k 0 yn1 .
I 00 n Z "t»z_xo S nﬂﬁlﬁ T 1640 z -
n'3 g <}_ 4 sin? 9k 00 XN .
) 16 - 16 o (neZ,ni3¢7),

In the following paragraph we will discuss these
results and compare them to the approximate
caleulations obtained in other papers.

5. Comparison with earlier treatments

The diffraction of intense laser-light by an ultra-
sonie wave in a liquid has been extensively studied
by Shiwinski and his collaborators [14], [15], [21],
{30]. They reported several experimental results
together with some theoretical attempts at an ex-
planation. Jozefowska [31] started from the as-

samption that the variation of the refractive index,
due to THG, is proportional to the amplitude of the
slectrie field squared. The nonlinear wave equation

thus obtained was solved by successive approxima-

linear combinations of products of Bessel functions
[21], [30]. A more practical expression for the
intensity of a diffraction line of any order was
given by Mertens and Leroy [22], who recalculated
the results of Jozefowska, but using the nonlinear
relative permittivity of the medium instead of the
nonlinear refractive index. The electric field was
developed in a power series in the small suscepti-
bility ynr. (in our notation) and then the generating
function method was used to solve the successive
wave equations of the perturbation scheme. A clear
advantage of the generating function method is
that it gives the intensities of the diffraction lines
in closed form.

If we translate the results of Mertens and Leroy
[22] in our notation, the intensities of the ordinary
and the intermediate diffraction lines are given by

tions, The intensities of a few central diffraction
lines were computed, in the form of complicated
7"\ 2 2y {LEYTT

kzgéx%\mrz 5 3kdz
ERPSHTEEEN KA Ry ) S

9 %2 0§ 1w, 22 ]
)

LI
Rl P l_' "6+ o2 (L 2

o 3kdz
J: 5 ¥ 270 (neZ,n|3¢Z), (48)
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where r is the ratio of the real amplitudes of the
third harmonic and the fundamental initially. In
our treatment, » vanishes as we take the THG to
occur only inside the perturbed liquid. The total
intensity of the diffracted beam, as computed from
eq. (48), is greater than g, however. This is ob-
viously the consequence of the fact that, in the
treatment of Mertens and Leroy, there is no feed-
back during THG on the amplitude of the funda-
mental. This means that the fundamental is held at
a given initial intensity and then acts as a pump
wave for the third harmonic. In this picture, THG
requires more energy, and hence a larger total
intensity. In the present approach we have derived
a set of coupled equations for the amplitudes of the
fundamental and the third harmonic, with coupling
both ways. This means that whatever energy the
third harmonic gains is lost by the fundamental
and vice versa, in such a way that the total energy
remains constant. However, it should be emphasized
that only a partial conversion of the energy from
the fundamental to the third harmonic is possible.
This point is discussed more in detail by Verheest
[32] for THG in general media. As can now be
expected, regarding the energy changes of both
waves, the total intensity of the diffraction spec-
trum,

-+ oo -+ oo _
> In+ > Inys=95=404o (49)
n= —oo n:/g—;;

(to be calculated from eq. (47)), is exactly equal to
the intensity of the incident light beam.

On the other hand, if we develop the expressions
for the intensities (47) in a power series in ynr., up
to terms in y%y,, we find

; 9 %2 b y%q, 22 k3
To=p84 k1 —— %7 Q0 XNLZ" 72 weE
64 (1 + y0)2 2+ 2x0

9702@3%?\@&? vl 3k 3z
TaA1 L oo Y3n (neZ),
64 (1 + 70)* 2420
Y R of 3kdz
— Z,n|3¢Z).
Lnss 621 + 70)2 J5, 2122 (neZ,n|3¢27)

(49)

If we compare this with eq. (48), we see that the
coefficient of J2 [k8z/(2 + 2 y0)] in the first equation
is no longer 1, but diminishes with z, in order to
compensate for THG. Otherwise it must be re-
marked that the intensities of the intermediate
lines and the supplementary terms in the intensities
of the ordinary lines (coefficients of J3, [3£8z/(2 -+
270)] are correct up to terms in yXy. The total
intensity, as calculated from eq. (49) is again of
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exactly, so that this property holds even after
approximating eq. (47) by eq. (49).
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