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Abstract

A systemized version of the tanh method is used to solve particular evolu-
tion and wave equations. If one deals with conservative systems, one seeks
travelling wave solutions in the form of a finite series in tanh. If present,
boundary conditions are implemented in this expansion. The associated
velocity can then be determined a priori, provided the solution vanishes at
infinity. Hence, exact closed form solutions can be obtained easily in
various cases.

1. Introduction

If one tries to solve nonlinear evolution and wave equations,
one first starts to look for travelling-waves solutions. In
principle, these waves can be found easily, because the PDE
under consideration can immediately be transformed into
an ODE.

In conservative systems, solutions are found by direct
integration, suitable transformation or substitution, or other
ad hoc techniques. The original PDE could be solved also
with more sophisticated methods such as the Hirota’s
bilinear technique [1], truncated Painlevé expansion [2],
direct algebra methods [3, 4] and the like. Other PDEs are
no longer that easy to solve. For instance, ingenious trans-
formations are needed to obtain closed form solutions to the
KdV-Burgers equation [5], despite the simplicity of this
equation.

As an alternative, the tanh method is introduced to find
solutions of travelling-wave type. This technique was used
by Huibin and Kelin [6] to solve a higher-order KdV equa-
tion and other authors (see for instance B. Liu et al. [7])in a
straightforward but not practical manner. They introduced
a power series in tanh as a possible solution and substituted
this expansion directly into the equation under study. As a
result, algebraic equations appear from which the coeffi-
cients of the power series as well as the velocity are deter-
mined.

To avoid algebraic complexity, we had customized this
technique [8] by introducing tanh as a new variable, since
all derivatives of a tanh are represented by a tanh itself. A
straightforward analysis can then be carried out so that the
method will be applicable to a large class of equations. In
this paper we further refine and systemize this technique
through the incorporation of boundary conditions and the a
priori determination of the velocity of the travelling wave.

A travelling-wave solution u(x, t) (or stationary wave
form) requires one coordinate:

u(x, 1) = U(9), 1)

where U(¢) represents the (localized) wave solutions, which
travels with speed v. It exemplifies a stationary wave with
characteristic width L = ¢~!. Usually, the wave number c is
arbitrary but in some cases it assumes particular fixed
values [3]. Under the above transformation, the PDE
reduces to an ODE in U(¢), which should be successively
integrated as many times as possible. Adhering to the
boundary conditions

a"u(d)
de

¢ =c(x — vt) and thus

U —0 and

50(n=12..) foré—> +o0, (2)

the integration constants, if present, should all be set zero.
With the assumption that travelling wave solutions are
expressible in terms of tanh (£), we introduce Y = tanh (&)
as a new dependent variable. Now conjecture that we deal
with solutions of the form

u(x, t) = U(¢) = S(Y) = i a, Y"

with Y = tanh (&) = tanh [c(x — v1)]. 3)

The highest power N will be determined by balancing the
highest degree terms in Y, upon substitution of eq. (3) into
the ODE. It turns out that N = 2 in most cases, so we start
with this value to illustrate the procedure.

The usual boundary condition U(¢) -0 for € - + o0 or
¢ — —oo implies that S(Y)—>0 for Y- +1 or Y -» —1.
Without loss of generalization we only consider the limit
Y — 1. Two possible solutions arises in this case:
1. S(Y)=F(Y)=by(1—-Y)1+b,Y)

=1 —-Y)T(Y) with T(1) #0 (4a)

or
2. S(Y) = G(Y) = do(1 - Y)?, (4b)

since one does not know how fast the solution decays. In
the first case, S(Y) decays as exp (—2¢), whereas in the
second case S(Y) = exp (—4¢) as £ —» 4 o0.
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In general, N types of expansions could occur, so that eq.
(3) transforms into:

ux, )= U@©) = (1 — Y Y a,¥"
n=0

with Y = tanh (&), (4¢)

since a solution may behave as (1 — Y)" withm =1, 2, ....
One then separately investigates the different cases m = 1,
m =2, .... This procedure then leads to a further system-
ization of the method.

Furthermore, these built-in restrictions on the form S(Y)
will allow us to determine the velocity of the travelling wave
a priori. This knowledge of the velocity plays also a con-
siderable role in the use of a perturbation approach (see
Part 2 [13]). To illustrate this procedure we treat some par-
ticular examples in more detail. In some cases, new results
are obtained.

2. Examples

As a tutorial example, we first treat the well-known Korte-
weg de Vries—Burgers equation.

2.1. KdV—Burgers (KdV B) equation
This basic equation is written as

ou ou 2*u *u

E+ua+bﬁ—a—é—;—0, (5)
where u(x, 1) is a conserved quantity [d/dt [Z% u(x, r) dx =
0, ie. the area under u(x, f) is conserved for all ¢, or

+
J u(x, t) dx is a constant of the motion]. This equation is
=

familiar in fluid mechanics. It describes for instance shallow
water waves in an elastic tube with dispersion and dissi-
pation [9]. After changing the variables and one integration,
we obtain:

—cvU(&) + LcUE)? + bc? d;(gé) —ac dfiléi) = C. (6)
Requiring

du d?
U, —dé—é) and d[gé) -0 as - oo, W)

the integration contant C is set to zero. Equation (6) can be
expressed in the new variable Y as:

—vS(Y) + 4S(Y)? + be*(1 — Y?)

ds(y) 5 B2S(Y)
X <—2Y~(—1~Y—+(1— Y?) o )
—ac(l — Y?) 955},3 =0, ®)

Substitution of the expansion (3) into eq. (8) and balancing
the highest degree in Y, yields N = 2. As already stated in
eq. (4) two solutions defined in eq. (4a, b) are possible. We
first take F(Y)=(1— Y)T(Y) with T(Y)= by(l + b,Y).
Upon substitution in eq. (8) and subsequent cancellation of
a common factor (1 — Y), we take the limit Y — 1, which
results in an expression for the velocity:

v = 4bc? + 2ac. O]
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Alternatively, this expression for the velocity could also be
obtained from substitution of the asymptotic form
U(¢) =~ exp (—2¢) into eq. (6) (with C = 0).

The remaining constants b, and b, in T(Y) are now easily
found through simple algebra. As a result we get:

a

TS

where Y = tanh [c¢(x — v1)].
This KdVB solution can also be cast in the following
form:

F(Y) = 12bc*(1 — Y)(1 + Y) + 24bc*(1 — Y) or
= 12bc? sech? & + 24bc*(1 — tanh &),

with ¢ = a/10b.

It represents a particular combination of a solitary wave
[first term on the r.h.s. of eq. (10c)] with a Burgers shock-
wave (second term). This KdVB solution resembles the form
A sech” £ + B tanh™ & + D, proposed by Jeffrey and
Mohamad [10], to get a solution to the KdVB equation.
They had to determine seven parameters to obtain a solu-
tion. This result is also derived by other authors with other
but rather involved methods [5, 11].

For a = 0 (KdV case) we get

v=4bc?, F(Y)=12bc}(1 — Y)1 + Y)

v = 24bc?, F(Y) = 36bc*(1 — Y)(1 + 1Y)  (10a)

(10b)
(10c)

(1)

the familiar bell-shaped form, since (1 — Y?) = sech?.

For b =0, eq. (5) reduces to Burgers’ equation. In this
case N = 1, so that now the unique solution by(1 — Y) must
be proposed. We immediately obtain b, = v = 2ac and
b, = 0. Hence

b =0 (Burgers case): v=2ac, F(Y)=2ac(l—-Y), (12

the familiar shock-wave profile is obtained. With one and
the same method we have solved three related cases (KdV,
Burgers and KdVB) simultaneously. Note that in the KdV
case, as well as Burgers case, the parameter c is arbitrary,
while in the combined case it must admit a particular value.
This fact can be interpreted as a subtle balance between a
solitary wave (KdV) and a shock wave (Burgers) to form the
combined solution [eq. (10c)].

Remarkably, the second possible solution G(Y) = d(1
— Y)? leads also to a real solution. Using a similar asymp-
totic procedure [by replacing U(¢) in eq. (6) by exp (—4¢&)],
we get for the velocity

13)

Note that the transformation of ¢ by 2¢ in eq. (9) gives the
same answer. The only variable left is found to be

v = 16bc? + 4ac.

dy= —12bc® ifc= — 1_35 and thus v = —24bc?.  (14)
With ¢ = —k, the solution is then written as:
=Igzz v= —24bk%, G(Y)= —12bk*(1 + Y2 (15)

with Y = tanh [k(x — vt)].

The latter solution is not new either: it can easily be
obtained from symmetry considerations. Indeed, replace v
by —v and S(Y) by S(Y) — 2v, which clearly leaves eq. (8)
invariant. Application of the same transformation to eq. (10)
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yields eq. (14). The results in eq. (14) were also obtained by
the same authors [5, 8].

In the case where the integration constant is different
from zero, the same analysis can be replaced since U(¢) # 0
as £ — oo. If the r.h.s. of eq. (6) is taken different from zero
(C # 0), one introduces the linear transformation

U =wie)+v-V,

to get rid of the constant term C. The velocity V in the case
is then given by

V2 =¢? + 2C. 17

The velocity v then represents the velocity in the case C = 0.
The quantity W(¢) obeys the nonlinear wave equation (6)
and results similar to eqs (10) or (14) are easily obtained.

An important and striking feature coming out of this
analysis is the close relationship between the velocity on one
hand and the boundary condition on the other hand. From
eq. (8) we directly get the relation

vS(Y) = 4S(Y)? for Y — +1, (18)

so that S(+1) =0 or S(+1) = 2v. We generally deal with
the following choices:

(16)

e for Y > +1 we have S(Y - +1) >0, in view of

the required boundary conditions; (19a)
e for Y - —1 we have either
S(Y - —1) > 0 (KdV case) (19b)
or
S(Y - —1) = 2v (Burgers’ and KdVB case). (19¢)

In the latter case (shock wave type of solutions), this relation
is established. This scheme can be applied to all examples
under study. Although in the KdV case [or other cases
where S(+1)=0] the velocity seems unaffected by the
boundary condition, it is still determined by the asymptotic
behaviour of S(Y) for Y — + 1.

It is interesting to note that Canosa and Gazdag [12], in
a study of a perturbative KdVB-like equation (see Part 2
[13]) observed that the propagation speed of the wave is
linearly proportional to its thickness, using eq. (6) (with
C = 0) and the limit £ — oo. Note that these authors had to
put the boundary value equal to 1, so that the velocity
equals %, since they were not able to find an analytical
expression for the velocity.

Another important issue is the stability of such a wave
form. It is believed (Bona and Schonbeck [14]) that
travelling-wave solutions are stable, but a definite
(analytical) proof is still lacking. However, numerical results
remain stable for a sufficiently long time and moreover, the
Burgers case is known to be asymptotically stable (Jeffrey
and Kakutani [15], Peletier [16]). This latter result is also
of some importance, considering the perturbative solution of
KdVB in the limit of weak dispersion we shall treat in the
next paper (see Part 2 [13]).

2.2. The DD equation

Another nonlinear dissipative-dispersion equation was
derived by Kakutani and Kawahara [17]. They analysed a
two-fluid plasma model, consisting of cold ions and warm
electrons. In the limit of long wavelengths, the excitation of
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ion-acoustic waves was governed by a wave equation in
which dispersive (due to charge separation) as well as dissi-

pative effects (due to electron and ion collisions), are
present. It is actually a KdV-like equation, which reads

ou ou 0*u 0 [ou ou

— —+b—S-—-a—\— —|=0. 20
P i “ax(ar+”ax) 20

The quantity u(x. t) represents the (perturbed) ion velocity
or density. Both a and b are positive quantities.

The third term represents the dispersive effect, whereas
the last term between brackets incorporates some dissipative
effects (proportional to the frequency of electron—ion
collisions). The same boundary conditions as before apply.

Since no analytical solution of eq. (20) exists, we neglect
the last term in eq. (20) which is allowed if a is relatively
small. Hence we deal with the following KdV-like equation:

ou ou 0Pu 0 (ou
TRy~ Rl <az) 0

which we for convenience call the DD (dispersion and
dissipation) equation. Repeating the same steps as before
and taking the integration constant equal to zero, we get:

2U(f) 2 4UE©)

1)

— 2 3 —
cwU(&) + 3cUE) + b —= a2 + ave a 0. (22
After introduction of the Y variable we arrive at
—vS(Y) + 1S%(Y) + bc*(1 — Y?)
ds( ) 5 d28(Y)
x( 2y ——— 1Y (I—Y)de
+ acv(1 — Y2)<dS(Y)> 0. (23)

In this case, we again have N = 2, equating the orders of Y
in both the highest derivative and the nonlinear term.
As usual, the first solution which we propose is

SY)=F(Y)=by(1-Y)1+b,Y)=(1— Y)T(Y). (24)
From the asymptotic behaviour, i.e. U(¢) — exp (—2&) in eq.
(22), we get
4bc?
1+ 2ac 23)

Note that this velocity has the correct limiting behaviour for
a—0 (KdV case). Putting eqs (24) and (25) into eq. (23), we
get after some algebra the following values for the
unknowns:

c= —3a, =36bc*, b, =1, v=24bc> (26)
We define again k = —c. so that in terms of the original
variables, we get:
k=t5a: v=24bk>

and F(Y)=36bk*(1 + Y)(1 — 1Y) (27)

with Y = tanh [k(x — vf)], a new result. The second trial
G(Y) leads to no solution.

Due to the presence of the last term in eq. (21), the orig-
inal solitary wave [emanating from a = 0 in eq. (21), i.e. the
KdV equation], disappears and instead, a remarkable
shock-wave arises, which moves from the left to the right.
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The general case, ie. eq. (20), is currently under study with
the aid of a perturbative approach.

2.3. The combined KdV-MKdAV equation

This equation reads:

ou ou ou 63u

— 2Bu — — 3Cu? =0. 28
o Mox x e @)
It serves as a model equation in DNA dynamics [18] and in
planetary plasmas [19-21]. It is not necessary to specify the
quantities B and C, though some values cannot be allowed.
After the customary transformation and integration, we get

d*U(d)
dg?
As before, the integration constant has been put equal to

zero. Next, we have

—cvU(E) — BeU(E)? — CcU(&)? + ¢? =0. (29)

—S8(Y) — BS(Y)? — CS(Y)? + ¢*(1 — Y?)
dsy) , dZS(Y)
( 2Y -+ (1 1Y ) 0. (30)

The velocity certainly will be related to the KdV velocity
[see eq. (11) with b = 1], since they shear equal linear
properties.

From the balancing operation we get N = 1, so we now
deal only with

L(Y)=ay1 —Y) and o= 4c* (the KAV velocity). (31)
After some algebra, we get the following result

2 B B
c=£———— v=4c: LY)=—3-(1-7Y), (32)

6 \/E )
a negative (B> 0 and C > 0) shock-wave, which moves
from the left to the right.

Another solution can be obtained, which is more
involved. Take the fraction
(1—-Y)1 +4dY)
Y} === (33)

(a+bY?

which is actually of the form (1 — Y)T(Y). The velocity is
thus the same as in the previous case. After some algebra,
we find d = 1 and the solution

11— Y)l+Y)
@, +a_Y?

with a, = B + . /B* — 18¢%C,
- x5
(@, +a_Y?
with ¥ = (34)

We thus deal with a remarkable solitary wave since
(1 — Y?) = sech? Such a solution is likely to exist since the
last term in eq. (30) contains the factor (1 — Y?) and the
remaining terms are proportional to the solution S(Y).

Of course, some restrictions are required on B, C and ¢
because the denominator may not vanish (0< Y?<1);
moreover B? > 18¢>C for any value of ¢ to keep the solu-
tions real. We deal with a more general solution than the
previous one, because ¢ now remains a free parameter.

These results were previously found by Khan and
coworkers [18] by direct substitution of a trial function.

S(Y) = 12¢2

= 12¢?

tanh [c(x — vf)] and v = 4c%.
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The fact that T(Y) can be represented by a fraction also
appears in other situations [8].

Again the velocity is related to the boundary condition.
Equation (30) yields

—vS(—1) — BS(— 1> — CS(—1)* =0 (35a)
or
v=—BS(—1)—CS(—=1)*=0 if S(—1)#0.

As expected, these relations, which connect the velocity with
the boundary conditions, are satisfied by both results.

(35b)

2.4. An extended MKdV-KdV—Burgers equation

Some years ago, Mohamad [22] solved a KdV-MKdV
equation, similar to eq. (28). We added one more term and
examined this equation, to see whether the tanh method was
capable of generating a solution. We start thus with
ou ou ou *u *u

— + 6u — — 6u? ——=10)
at®n il e
Imposing the usual boundary conditions [see eq. (2)], which
give an expression for the velocity, we get after some algebra
the following shock-wave profile

u(x, t) = c\/Z{l — tanh [c(x — v1)]}
1
with c:6—b(3\/5_a)

(36)

2
and v = ?c 3./b — a). 37)
A limiting case can be found setting a = 0 (no dissipation or
diffusion). For a thorough discussion of this solution, as well
as two-dimensional cases, see [23].

2.5. The Fisher equation with nonlinear convection

We deal with a Fisher equation in which a term, describing
nonlinear convection, is added. Murray [24] showed that
wave solutions really exist in this case. However, no solution
was obtained.

We start thus with

ou ou 0%u
E+Kua:ﬁ+u(l—u). (38)
Introducing the ¢ variable, we find
dU(é) du()
—cv ——= a cKU(§) —=~ a
dZU
- 2+ ven - ven (39)

As boundary conditions we assume that, in analogy with
Fisher’s case,

2
U(é), % and d dlgé)—»O as £ — oo. (40)
and
U(¢) -1, while Zf)
and dllgi) -0 asé— —oo. 41)
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The solution will thus develop between the two end states 1
and 0. With the aid of the new variable Y, we get instead of
eq. (39)

(Y) + (1 —Y?

d2

a(l — Y?) ——

as(y)
( 2y 20,

— cK(1 — Y?)S(Y) +5(Y)— S(Y)?2 =0 (42)

ds(Y)

dy
Performing the same analysis of balancing linear terms vs.
nonlinear ones, we find M = 1. A possible solution will be
S(Y) = (1 — Y), in view of the boundary conditions (40) and
(41). As before, the velocity is then easily calculated with the
aid of the asymptotic behaviour of S(Y). This yields

4+ 1

% (43)
After substitution of this expression and S(Y) =11 — Y)
into eq. (42), one obtains
- % (1 + Y1 — Y?)4c — K) (44)
so that ¢ = K/4 leads to the exact solution:
u(x, t) = 3(1 — tanh ¢) (45)
with

K K*+4

f—z[x—< 5K )t] (46)

Note that in the limit K — 0, eq. (48) transforms into a
Fisher equation without linear diffusion:

ou_ o
ot ox?
while the argument in eq. (46) becomes £ = —t/4. Since this

argument is independent of x we no longer deal with the
Fisher equation but with Verhulst equation (see Murray

[24]):
du
dr

which describes logistic growth without diffussion. Note
that eq. (48) is easily extended to
du Ou *u
Ku—=D —— + pu(l —

o TR =Dt il
with D and p positive parameters. By a suitable (but not
trivial) transformation, it can be rewritten in its original
form, or alternatively solved with the tanh technique. As a
result, we get

+ u(l — u), (47)

=u(l — u), (43)

(49)

8K? + 2Dp
c=— and v=———+,

4 K (50)

to be substituted into the variable & = ¢(x — vt). The other
examples can be generalized and treated in the same sense.
Although a definite proof is lacking, we expect these
waveforms to be stable. In the case of the Fisher equation
one knows that general waveforms, defined at t =0 and
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with a velocity less than 2, lead to unstable waves [24]. This
result does not apply here since the velocity, given by eq.
(43), is always larger than or equal to 2(c > 0).

2.6. Model equation describing foam drainage

Recent Verbist and Weaire [25] derived the following nolin-
ear wave equation:

o L(w2E)

2 0x
which describes foam drainage through a cross-sectional
area A [ ~a(x, t)].

The tanh method (without boundary conditions) can be
used again to solve this remarkable nonlinear diffusion
equation. We thus first introduce u(&) = ufc(x — vt)] = a(x,
1), a stationary wave profile. Hence, eq. (51) transforms into

7GR PN/ a9)
dé dé 2 dé¢ /)

To eliminate the square root in the r.h.s. of this equation, we
define

1

(52)

u(€) = w(Q). (53)
Next, using the tanh formalism, we get with
w(¢) = S (tanh &) = S(Y) the equation
dS(Y) 2 dS(Y) ds(v)\?
v i 4S4(Y) —— + 2c(1 — Y2)<—dY )
+ cS(Y) ((1 - Y3 dS(Y)) 0. (54)

The balancing procedure to determine M, is now different:
one has to compare the second term [cubic in S(Y)] with
the other quadratic terms in eq. (54). The value N =1 is
then easily obtained. Hence

S(Y) = b, + b, Y.

After substitution of eq. (65) into eq. (64), we get the follow-
ing recurrence relations from the coefficients of the quadra-
tic function in Y, which must vanish completely:

(53)

Y2 coeff.: 2b,(c + b;) =0 (56a)
Y?! coeff.:  bo(c + 4b;) =0, (56b)
Y° coeff.: —b,c— v+ 2b2=0. (56¢)

Obviously, b; # 0 so that b; = —c from eq. (56a). Simple
algebra then leads to

by=—¢ a,=0 and v=c?

so that S(Y) = —cY or w(¢)= —c tanh & (57)
From eq. (53), we finally get the general solution
u(é) = ¢? tanh? ¢

or «x, t) = c? tanh? [c(x — c?t)]. (58)

If we take the required boundary condition (zero flow at
X — + 00) into account, we get their result

a(x, t) = ¢ tanh? [c(x — c*1)],
=0, X

X\Ct

2, (59)

\%
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which was presented without any derivation.

This shock wave [eq. (59)] describes the transition
between wet foam (by continuous addition of liquid) and
dry foam.

3. Discussion and conclusion

It is shown that the tanh method in its present form is a
powerful technique for investigating nonlinear wave equa-
tions, in particular those where diffusion is involved. The
mean feature of this approach is based on the hypothesis
that the travelling-wave solutions we are looking for may be
found and expressed in terms of a tanh. This hyperbolic
function is then used as an independent variable. Moreover,
the embedding of the boundary conditions within the pro-
posed solutions (whenever possible) and the a priori deter-
mination of the velocity through asymptotes has a strong
impact on the ease of use of the method, so that tedious
algebra is avoided. Closed-form solutions are then derived
in an elegant and straightfoward way since we deal with
polynomial expressions.

One observes from the result that the wave number ¢
(inversely proportional to the width of the wave form) is
sometimes an arbitrary parameter (more often when dealing
with simple nonlinear equations), while in some cases it is
not (the more complicated ones). This latter case definitely
excludes any possible soliton behaviour (interaction of soli-
tary waves), since the velocity depends on c¢. Adding still
more terms to these equations, one obviously deals with
equations that generally cannot be solved exactly.

Numerous other examples can be treated as well, even
KdV-Burgers and MKdV-Burgers in two dimensions, as
well as coupled equations [26]. We have chosen some selec-
ted problems to underline the generality of this technique.
Known solutions are now derived with this alternative tech-
nique in an elegant and much shorter way. Moreover, in
some cases, new results are also found. Of course, we are
aware that some classes of equations are not suited for the
tanh technique. For instance, we should mention the nonlin-
ear Sine-Gordon equation and related equations.

Moreover, the applicability of the presented method will
be greatly enhanced by its use as a perturbation technique.
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In the following paper (Part 2), we will examine different
approximate solutions of problems that are “tanh”-like.
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