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Abstract

With the aid of the tanh method, nonlinear wave equations are solved in a
perturbative way. First, the KdVBurgers equation is investigated in the
limit of weak dispersion. As a result, a general shock wave profile, with a
perturbative solitary-wave contribution superposed, emerges. For a partic-
ular choice of the parameters, a comparison with the exact solution is
made. Further, the MKdVBurgers is investigated in the same limit and
similar results are obtained.

1. Introduction

When a nonlinear wave equation cannot be solved exactly,
one tries various perturbation techniques to solve it approx-
imately. Most of these techniques, however, are based on a
linearization procedure, which we prefer not to introduce
here. We want to take full account of the nonlinear property
of the problem under study. If one deals with conservative
systems, where nonlinear waves propagate without change
of their shape, the reductive perturbation theory (Ichikawa
and Watanabe [1]) does not have that peculiar behaviour
and may be used to tackle those kind of problems. An inge-
nious choice of new variables (stretched coordinates) is
introduced so that the nonlinear character of the lowest-
order wave profile is taken into account. In principle,
dynamical equations for the higher-order perturbation
terms can be investigated, but the results should be exam-
ined thoroughly, to avoid secular behaviour. This method
has been successfully used in plasma physics to investigate
nonlinear wave propagation in collisionless plasmas.

In this paper, however, we propose a somewhat different
approach, since we only like to deal with travelling-waves.
Starting point is the tanh method used in part I (see [2]),
where exact solutions of such type are derived with straight-
forward and (in most cases) simple algebra. The ease of use
of the tanh technique to solve nonlinear evolution equations
is striking. Consequently, one may ask whether the method
can be applied to solve problems for which no exact solu-
tions exist.

The possibility of using this technique in such cases
depends on the availability of having an exact solution (in
some limiting case) for the problem under study, so that a
valid perturbation scheme can be set up. A problem treated
in this sense was first investigated by one of us [3].

Two examples of this kind will be discussed. First, the
KdVB (Korteweg—de Vries-Burgers) equation and the
associated modified KdVB (in short MKdVB) equation.
Because the former equation possesses also an exact solu-

tion (see part I [2]), the accuracy of this perturbation
scheme can easily be tested. The latter equation has no
exact solutions except in the limit of zero dispersion, where
it reduces to the Burgers equation or the limit of zero dissi-
pation where it becomes the Korteweg—de Vries equation.

2. Perturbation analysis of the KdV-Burgers equation

As mentioned in part I (see [2]), the solution to the KdV-
Burgers equation (KdVB) can be viewed as a unique com-
bination of a solitary wave and a shock-wave structure. As a
result, the wave number ¢ which relates velocity, amplitude
and width of the localized wave form becomes a fixed
parameter, in contrast to the individual KdV or Burgers
equation where this parameter can be chosen freely. It is
thus very unlikely that experimentally observed waves of
this type can be matched with this particular, although
exact, result.

The aim of the following analysis is to determine whether
approximate solutions can be found with the tanh tech-
nique, allowing an arbitrary wave number c.

2.1. Analysis

If one has the intention of setting up a perturbation scheme
for this equation, two parameters are available which can be
assumed small and thus used as an expansion parameter:
a < 1 (small dissipation) or b < 1 (small dispersion), associ-
ated with a perturbed shock wave or a perturbed solitary
wave respectively. It turns out however, that only the latter
case is suitable to perform a perturbation expansion with
the tanh technique (see discussion afterwards).

The KdV-Burgers equation is now rewritten as

ou ou 0*u o’u

g gl 2

ot ox ox? ox3
so that in lowest order (b = 0) the Burgers equation appears.
Transformation to the variable £ = ¢(x — vr) gives

eUE L duE)
de? d¢

In terms of the new variable Y (=tanh [c(x — vt)] =

tanh &), we get instead of (1)

~0(e) withe<1, )

0. @

—cvU(¢) + 2cU(E)? + bc?

—oS(Y) + 15(Y)? — ac(1 — Y?) 93%,9
b1 — 12—y D)y 5D
= bc¥(1 Y)[ 2Y 7= +(1-7Y? dZY]' 3)
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For b=0 (Burgers equation), the solution is Sy(Y) =
2ac(1 — Y). The associated velocity is v = 2ac and the wave
number c is still an arbitrary parameter.

In the limit of weak dispersion [b ~ O(¢)], we approx-
imate the solution of (1) by the following (infinite series)
expansion

F(Y) = So(Y) + bS,(Y) + b2S,(Y) + ... . 4
The ~usual boundary conditions still apply, so that we
require

FY=1)=0

or

So(Y=1)=0, S(Y=1=0, S(Y=1)=0,.... %)

We recall that an exact solution was found with the aid of
F(Y)=(1-Y)T(Y) with T(1) # 0. We anticipate that the
same behaviour occurs in this case, so that all S(Y)~ (1
— Y). Substituting the associated asymptotic form, which
goes like exp (—2¢) for € —» + oo, into (2) gives

v = 4bc? + 2ac, (6)

the same result as in the exact case (see [2]).

In terms of the expansion parameter b, we thus have
v =1, + bv, + b, +
so that vy = 2ac, v, = 4c?, v, =v3=---=0. (7

Remark that the relation between the left-hand boundary
value [obtained in the limit for Y — —1 from (3)] and the

velocity still exists:
v=24F(Y > —1) or 4ac+ 8bc?=F(Y - —1). (8)

Substitution of (4), (6) and (7) into (3) gives a series expan-
sion in b. To successive orders, we obtain:

b2 —2008o(Y) + So(Y)? — 2ac(l — Y?) —=— 43 O(Y) =0, (9a)
bl: —;80(Y) — 1o 81(Y) + So(Y)S,(Y)
~ ac(l — Y?) di‘g) &AL = YR -‘%
+2c2Y(1 — Y?) —2— ds O(Y) =0, (10b)

b2 —200S,(Y) — 20,8,(Y) + 254(Y)S5(Y)

ds, (Y
Si(Y)2 —4c2Y(1 — Y?) — S( )
d?s,(Y)
+ 2031 = Y =05
ds,(Y)
" 2 2
2ac(1 — Y*) ——— ay =0, etc... (10c)

The lowest order equation (9a) represents Burgers case. As

already mentioned, the corresponding solution reads
So(Y) = 2ac(1 — Y). (11)

Next, we deal with a first-order inhomogeneous differential
equation in S,(Y), which can readily be solved, substituting
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eqs (11) into (10b). As a result, we get

4, 2
S =1 = YZ)[~4c2 In (1+7)+ 7 f = - cl] (12a)
or
S(Y)=4c(1 — V)= (1 — Y4’ In (1 + Y) + C,]. (12b)

The first term on the r.h.s. of (12b) contributes to the bound-
ary condition at Y — —1, while the other terms represent a
solitary wave correction (which vanishes for Y — +1) to the
shock wave.

In (12a, b) the integration constant needs to be deter-
mined. In contrast to a perturbation approach within the
framework of dispersive waves, one cannot adjust here the
integration constant to an initial condition at ¢t = 0. It will
be argued that one can take C, = 0.

Finally eq. (10c), again an ODE of first order in S,(Y), is
then solved, it yields

S,(Y) = Zci (1 — Y3){12¢%(1 + Y)

—82In(1+ N[ —YInd+ )]
—8cX(1—Y)In (1 + Y)— a*C,}, 13)

with the aid of (11) and (12a, b). The second-order solution
now only contributes as a ‘solitary wave’ correction to the
perturbed shock wave structure. Again, an integration con-
stant C, is present.

A perturbed solution of the KdVB equation with weak
dispersion is thus obtained, with an arbitrary wave number
¢ and some integration constants. If necessary, higher-order
solutions can be found as well.

2.2. Discussion
Because an exact solution is known for a particular wave
number [¢ = (a/10b)], we are able to compare the results of
the perturbation approach with the exact solution. Hence
we first choose

c=1 a=1 and b=, (14a)

to cope with the requirement for the exact solution.
Secondly, we take

c=1, a=1 and b=1% (14b)

To get an idea of the accuracy of the perturbation, we
have substituted the successive approximate solutions into
the original wave equation (3), and calculated the remaining
terms with relations (14a, b) respectively. These remaining
terms are defined as remainder terms. Note that the quan-
tity Y in the figures is taken as tanh x, since time plays no
role in the presentation of these wave forms. Hence we
define:

remainder term A,:

substitution of F(Y) = (2ac + 4bc*)(1 — Y); (15a)
remainder term A, :
substitution of F{(Y) = Sy(Y) + bS,(Y); (15b)

remainder term A4, :

substitution of F(Y) = So(¥) + bS,(Y) + b2S,(Y). (15c)
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We have defined F((Y) here as the lowest-order solution in
(15a) and not Sy(Y) = 2ac(l — Y), because it satisfies the
exact boundary conditions for ¥ — —1. After substitution
of these successive approximations (15a, b and c) into the
KdVB equation (3) we observe, as expected, that 4, = O(b),
A; = 0(b?) and A4, = O(b>) (valid for all values of C, and
C,).

However, one problem remains: the determination of the
integration constants. In the first-order approximation
S,(Y), we choose C, = 0. This can be argued as follows. The
improved zeroth-order approximation [see eq. (15a)] is
equal to (2ac + 4bc?) at Y = 0. The same value at ¥ =0 is
reached by Sy(Y) + bS,(Y), if C, = 0. Any integration con-
stant C,, different from zero, may only deviate from this
value by O(b), a small amount, to remain consistent with the
perturbation approach. Moreover, from a three-dimensional
plot of A; (made at t=0) with the relevant values
—-10<C, <10, —5<x <5 and relations (14a) for the
parameters a, b and ¢, it is observed that the remainder term
| A; | reaches its lowest values for C, =~ 0.

On the other hand, the situation for the next order is a
little bit different. Using the same argument as before (at
Y =0), we get C, = 12(c*/a*), which equals 12 with the
choice (20a) of the parameters. However, a three-
dimensional plot of 4, with —15 < C, < 15 reveals that
C, ~ 9 eventually will be the best choice. The arbitrariness
of C, can be used to refine the perturbation approach in
that order.

The results of the successive remainder terms are plotted
in Fig. 1. The lowest-order solution (with the correct bound-
ary conditions) is represented here by Fy(Y) = 2(1 — Y) =

12(1 — tanh x); the smallness parameter is b = 5. As soon

as the perturbation terms are included, a much better agree-
ment with the exact solution is achieved, since the remain-
der terms become smaller.

It should be noted that Canosa and Gazdag [4] faced the
same problem concerning the integration constants, during
their analysis of the KdVB equation (see discussion in next
section). They used a phase plane analysis to cope with this
problem.

Fig. 1. Remainder terms in the KdVB case: a=c=1 b= and
Y =tanh x: (a) 4, (full curve), (b) 4, with C; = 0 (broken curve), (c) 4,
with C, = 0 (chain curve), (d) 4, with C, = 9 (dotted curve).
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A direct comparison of the exact and the approximate
solution confirms the accuracy of the above results. For a
fair comparison, however, one has to keep in mind that the
successive (and thus better) approximations cause a phase
shift, due to a steepening of the shock wave. So we intro-
duce Y’ =tanh (x + d) into the exact solution (which of
course remains an exact solution under translation) and
Y = tanh x into the perturbed solution. As a reference
point, we choose d in such a way that the difference between
the two solutions vanishes at x = 0 (Y = 0). We then define

D = Fyayp(Y') — [So(Y) + bSy(Y) + b°55(Y)], (16)

as the difference between the exact and the approximate
solution. We have thus chosen relations (14a) and two rep-
resentatives for the approximate solution: both with C; =0,
one with C, = 0 and the other with C, = 9. As expected, the
second order approximation with C, = 9 gives remarkably
good results, as one can observe from Fig. 2, since the differ-
ence D satisfies | D | < 0.008.

Finally, in Fig. 3, the different perturbation solutions are
plotted, using the parameters of the exact solution: ¢ = 1,
a=1 and b = 75 [ie. eq. (14a)]. As expected, a relatively

Fig. 2. Plot of the difference D between exact [Y = tanh (x + d)] and per-
turbed solution of the KdVB equation fora=c=1,b = 5 and Y = tanh
x: (a) with C, =0 in S,(Y) (dotted curve); (b) with C, =9 in S,(Y) (full
curve).

-4 -2 0 2 4

Fig. 3. Perturbed solutions of the KdVB equation for a=c=1 and
b = {5 with ¥ = tanh x: (a) Sy(Y) (dotted curve); (b) Sy(Y) + 4bc*(1 — Y)
(chain curve); (c) So(Y)+ bSy(Y) (broken curve); (d) So(Y)+ bS,(Y)
+ b?S,(Y) with C, = 9 in S,(¥) (full curve).
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large difference between S,(Y) [defined in eq. (11)] and the

improved lowest order solution Fy(Y) = Sy(Y) + 4bc*(1

—Y) is observed. Only the latter approximation has the

correct boundary condition. Adding more perturbation

terms, it is observed that the shock wave tends to steepen.
For other values of the parameters [see eq. (14b)], i.e.

=1, a=1 and b=1

we have plotted in Fig. 4 the same approximate solutions.
Due to an increase of dispersion (large value for b), one now
clearly observes the solitary-wave correction on top of the
shock-wave structure, before the steepening sets in. In
general, steepening of the shock-wave is more pronounced
than in the case without dispersion.

2.3. Comparison with other theories and conclusion

Other perturbation approaches appear in the literature for
the KdVB case. We first mention the series solution carried
out by Gagliardi et al. [5], based on the Rosales method (in
fact Padé-approximants). Xin et al. [6] define a series solu-
tion in three distinct intervals with some matching proper-
ties. They arrive at a nonlinear system of algebraic
equations which can be investigated numerically. Numerical
results in both cases show a bump-like behaviour, although
with a slight oscillatory character in the case of weak disper-
sion. On the contrary, pure numerical results performed by
Grad and Hu [7], confirm our analytical results.

Due to the analogy between the Fisher equation and the
KdVB equation (assuming a slow change of the wave form
so that the second derivative is small and thus neglected in
zeroth-order), Canosa [8], and the same author with
Gazdag [4] treated also this KdVB case with weak disper-
sion. In fact, their analysis was based on earlier work of
Johnson [9]. They first imposed fixed boundary conditions

Ug—-1 as €5 —o0 and U -0 as &>

as steady states, so that the (unknown !) velocity in their
case is normalized and defined as v = 1. Moreover, they had
to transform the Fisher equation in terms of the KdVB
equation.

= =2 2 4 7
Fig. 4. Perturbed solutions of the KdVB equation fora=c=1andb =%
with Y = tanh x: (a) So(Y) (dotted curve); (b) So(Y) + 4bc*(1 — Y) (chain
curve); (c) So(Y) + bS,(Y) (broken curve); (d) So(Y) + bS,(Y) + b28,(Y)
with C, = 9 in §,(Y) (full curve).
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If we transform their results to our Y-variable, the zeroth
and first order solutions of their approximate solution are:

S(V)=31-Y)— %, =Y —1In(1-Y*]+0(0b?),

(17

with b’ = b/a*. These results differ slightly from ours.

With the aid of phase plane analysis, they introduced
special (initial) conditions at Y = 0, the inflection point of a
shock wave with profile (1 — Y):

1

zeroth order solution (b’ =0): 3 at Y =0, (18a)

first order solution [O(})]: % at Y=0. (18b)
In this approach, no attempt was made to derive a second-
order solution.

A perturbation scheme for the KdVB case with weak dis-
persion is carried out. As a result, we have again a free
parameter ¢ as in the KdV or Burgers case. This is in con-
trast to the exact solution, which has limited use since the
boundary condition for Y - —1 (or £ = — o0) and the wave
profile are completely determined by the constant param-
eters a and b.

In the next example, we treat the MKdVB(+) equation
(the + sign refers to the positive nonlinear term) for which
no analytical result is known. We are again forced to con-
sider the limit of weak dispersion, taking the dispersionless
case as starting point for our perturbation approach.

3. Approximate solution of a MKdVB equation
3.1. Analysis

In this second example, we treat a combination of a modi-
fied KdV equation with Burgers equation, a natural exten-
sion as in the previous case. But now, the nonlinear term
can be positive or negative. In the case of a negative nonlin-
ear term [referred to as MKdVB(—)], an exact solution has
already been found (Huang et al. [10]), similar to the KdVB
case. In the case where the nonlinear term has the opposite
sign [MKdVB(+)], no exact solutions are known to us.

The form of the MKdVB equation to be investigated is:
ou , Ou 0%u o3u
a-’r u g—va?-kﬂﬁ—o.

Here B and v are positive constants measuring dispersion
and dissipation respectively. Applying the tanh method to
this equation affords no exact solutions, except in the limit-
ing case f =0 (no dispersion, ie. a Burgers equation) or
v =0 (no dissipation, i.e. the MKdV equation). Again, as
explained in the earlier, we only develop a perturbation
approach in the case of weak dispersion. Therefore, we
rewrite (19a) as

o a0u Pu_

ot P) a2 Toxd

With the customary transformation { = c¢(x — vt) with U({)
[=u(x, t)], we get:

(19a)

—B-—=~0() withe<l. (19b)

du

, d2U(Q
a -k

ag -’

—oU() + 2U(0)? — ve (20)
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assuming a vanishing integration constant (the usual bound-
ary conditions still apply) to get a localized solution.
Next, we perform the transformation

U = /h(Q) (21)
to remove the cubic nonlinearity. Hence
—4vh(0) + 8h({)* — 2vc %

= Bc? L <%>2 _ 2 %

= Bc HO \ e 2fc a (22)

Remark that the Lh.s. of eq. (22) is closely related to eq. (2)
with b = 0, actually the Burgers equation in the Y variable.
We are thus confident that we shall deal with a stable solu-
tion in the equilibrium regions (for { —» + co) since stable
solutions exist in Burgers case (proved by Peletier [11]).

The next step is Y = tanh { so that A({) = R(Y), which
necessarily must be a positive quantity. Equation (22) then
becomes

dR(Y)
dy

— Z_L__ _ ZZMZ _ 2 _ 2
= Be R(Y)[(l Y)(dy>] 2Bc*(1 — Y?)

—4uR(Y) + 8R(Y)? — 2vce(l — Y?)

X [—ZY % +(1-Y? d;%)] (23)
We again propose the following series expansion
R(Y) = Ry(Y) + BRy(Y) + B*Ry(Y) + -+ (24)
with the boundary conditions
RY=1)=0
or
Ry(Y=1)=0, R{(Y=1)=0, Ry(Y=1)=0,... (25

keeping in mind that we again assume that R(Y) and R(Y)
(i=1,2,3,...) go to zero for Y —» 1 as (1 — Y). Similarly,
the velocity is developed in a series expansion

=0y + Pv; + BPv, + . (26)

Note that the quantity 1/R(Y) in the first term on the r.h.s.
is replaced by

1 [1 g RO R

R L' PR P R
2
-5 o)+ | @)

As usual, the velocity can be determined by the asymptotic
behaviour of R(Y) so that the solution of (23) behaves as exp
(—20) for { - + co. Substituting this asymptotic behaviour
into (22), we get for the velocity

v =vc + fc = vy + fu, (28)
so that
vo=ve, vy=c? and v,=---=0. (29)
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Note that the boundary condition at the Lh.s. (the limit for
Y — —1) is now determined by the relation

v=4R(Y » —1) or 2vc+2Bc®>=R(Y — —1). (30)

Substitution of eqs (24), (28) and (29) into eq. (23) gives a
series expansion in fi:

B°: —4vo Ro(Y) + 8R(Y)?

dR,(Y) _

T = (31a)

— 2ev(1 — Y?)
Bl: —4v,Ry(Y) — 4vy R,(Y)

dR,(Y)

+ 16R(Y)R(¥) — 2ve(l — ¥?) =L

c? 2ol ARo(Y)\?

‘RO(Y)“‘Y)< ay )

dR,(Y)
dY

d*Ry(Y) ~0
dyz |~ 7

+2¢2(1 — Yz)[—ZY

+(1—Y? (32b)
B*: —4v,R,(Y) — 4v, R,(Y) + 8R,(Y)?
dR,(Y)

—2VC(1—Y2)d—Y—R(Y)
0

<12 dRy(R) dRy(Y) Ry(Y) (dRo(Y)>2:|
dY dY ~ R(Y)\ dYy

(1 — yop

: dR,(Y)
201 _ v2y| _ 1
+ 221 —-Y )[ 2Y —5

2
ra-mERO)_,

(33¢)

The zeroth-order solution (f = 0) is found by direct appli-
cation of the balancing procedure to the linear term of
highest order and the nonlinear term. Then M = 1, so that
Ry(Y) =ro(1 — Y). After some simple algebra, we get

Ry(Y) = % (1—-Y) with v(=vy) = vc, (34)
a solution, quite similar to the Burgers shock wave.
The first-order equation is also readily solved
2
R,(Y)=11— YZ)[__’;CZ In(1+Y)+ 57 16ch1],
35

which represents again a “solitary-wave” correction, quite
similar to the KdVB case. The second term on the r.h.s.
again contributes to the boundary condition, while the last
term represents the solution of the homogeneous part of the
ODE of first order. With the same arguments as in the pre-
vious case, the integration constant D; can be neglected.
Even for relatively small values of D,, the perturbative solu-
tion obviously (35) will diverge quickly.

After substitution of (34) and (35) with D; = 0 into (33c¢),
we are able to solve the resulting first-order ODE. This
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2
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¥
02 %,
A *

Fig. 5. Remainder terms in the MKdVB case, for v=c=1, f = f5 and
Y = tanh x: (a) B, (dotted curve); (b) B, with D, = 0 (broken curve); (c) B,
with D, = — 35 (full curve).

second-order solution is

3c? N
RyY) = 1o (1= Y)Y =3 +In(1+ Y)

2 2
x [3YIn(1+ Y)+3Y—7] ——;—S—Dz]. (36)

Obviously, the integration constant D, cannot differ much
from zero either. If one considers a zero contribution at
Y = 0 (following same discussion as before), one simply gets
D, = —(9¢3/256v?).

3.2. Discussion

Again, like in the KdVB case, one can define remainder
terms, representing the remaining contribution after substi-
tution of the different approaches into the MKdVB(+)
equation. Hence we find the remainder term

B,: substitution of R(Y) = X(cv + Bc?)(1 — Y); (37)
B,: substitution of R(Y) = Ry(Y) + fR(Y); (38)
B,: substitution of R(Y)= Ry(Y) + BR,(Y) + B*R,(Y). (39)

For certain representative values of the parameters, these
remainder terms are plotted in Fig. 5.

-4 -2 0 2 4

Fig. 6. (Squared) perturbed solutions of the MKdVB equation for
v=c=1, B=7 and Y=tanh (x): (8 R(Y)= Ry(Y)+ :pc*(1-7)
(broken curve); (b) R(Y) = Ry(Y) + BR,(Y) + B*R,(Y) with Dy =0,D, =0
and D, = — (full curve).
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Finally, the perturbed solutions of (3) are pictured in Fig.
6. Again, a solitary-wave structure appears on top of the
shock-wave. Through relation (21), one simply has to take
the square root of the obtained approximate results of (24)
to get the final solutions, which of course leads to the same
conclusions.

4. General discussion and conclusions

With the aid of the tanh technique, we are able to establish
a perturbation procedure to solve the KdVB and the
MKdVB(+) equations approximately in the limit of small
dispersion (b or f — 0). It is clear from the analysis that the
use of a new independent variable Y = tanh makes the cal-
culations transparent and straightforward.

Unfortunately, the other limiting case (small dissipation)
cannot be carried out in this way for both equations under
study. It limits the use of the tanh technique. Such failure is
due to the value the solution takes at the left boundary
(¢ > —o0). One expects here a solution, closely related to a
KdV solitary wave, with a tail of small thickness at
¢ - — oo, which should effectively disappear in the limit
a — 0. However, due to the close relationship between the
velocity and the boundary condition at that point [see eqs
(8) and (30)], this requirement cannot be fulfilled. As an
example, take the KdVB case for instance. From (3) we get

uS(Y > —1) = 3S(Y - —1)2, (40)
which gives for S(Y = —1) # 0 the relation
2v = 4ac + 8bc* = S(Y = —1), (41)

using eq. (4). Even for small values of a, the boundary value
S(Y = —1) has finite thickness and will never vanish in the
limit a — 0.

Nevertheless, in the cases where the tanh technique can be
used, the ease of use is striking. Other applications, such as
nonlinear diffusion equations, are under study. In com-
bination with a phase plane analysis and numerical simula-
tion real insight is gained in the structure of the associated
solutions.

We are aware of the fact that the relevant perturbed equa-
tions cannot be solved directly in some cases. One can then
try at least an infinite expansion in tanh. If for instance the
desired solution decays for £ > + o0 (or Y — +1), the suc-
cessive terms in such an expansion are becoming less impor-
tant because the variable Y satisfies the inequality relation
—1 < Y =tanh & < 1. Such an approach was already used
in [3], to solve approximately a coupled set of reaction-
diffusion equations, originating from the domain of chemi-
cal reaction kinetics and population dynamics. The only
difficulty left is then the determination of the different coeffi-
cients of the expansion, because the recurrence relations
generally show a (nonlinear) coupling between these coeffi-
cients. A subtle and careful analysis of limiting cases will be
needed and the knowledge of some numerical results proves
necessary for deriving valid results. The latter case, however,
falls beyond our present analysis.
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