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INTRODUCTION
Review of acousto-optic diffraction

The vibration of a piezo-electric transducer, driven by a radio frequency electric
signal, generates a progressive ultrasonic wave into a cell of acousto-optic (AO)
material. As sound passes through the medium, it is characterized by regularly
alternating compressions and rarifactions. These alterations of the internal strain
cause a periodic variation of the optical index of refraction of the transparant medium.
This type of coupling is commonly called the photoelastic or elastooptic effect. To
light impinging on the cell, the index variation appears as a slowly moving volumetric
phase grating, with spacing equal to the acoustic wavelength and grating depth
proportional to the amplitude of the acoustic wave. Considering Fig. 1, where the
angle @ between the incident monochromatic light and the acoustic wavefronts is
close to zero, we observe that the emerging light is diffracted into a set of multiple
beams (orders at the output). The diffracted beams are shifted up and down in
frequency by an amount equal to a multiple of the acoustic frequency. The deflection
angles of the various emerging light rays also depend on the ultrasonic frequency,
while their intensities (hence, the number of output orders) are primarily determined
by the width L of the cell and the strength of the sound field. The diffracted light
beams can be imaged on a photographic plate (using appropriate optical instrumenta-
tion) so forming a diffraction spectrum (Fig. 2).

To be more precise, one has to distinguish between two cases, as illustrated in
Figs. 3a and 3b. If the input light is incident perpendicularly to a rather narrow
acoustic cell, the diffraction pattern shows a central order of undiffracted light and
many side orders of diffracted light. This case of multi-order diffraction (illustrated
in Fig. 3a) is commonly called Raman-Nath diffraction (RN diffraction). It is
achieved for rather intense sound fields in the lower frequency range (< 400 MHz).
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For thick sound fields of higher frequencies, essentially only two diffraction
orders (zeroth and first) will exist, provided the input light intercepts the sound cell
at the so-called Bragg angle, as shown in Fig. 3b. This case of two-order diffraction
(referred to as Bragg diffraction) is applied in a majority of commercial acousto-optics
devices (Bragg cells). The fact that acousto-optic devices (either operating in the
Raman-Nath or in the Bragg diffraction regime) have the capability of altering the
position, frequency, amplitude and phase of a (laser) light beam, has resulted in a
variety of applications in signal processing and optical communication. Before
proceeding to a brief discussion of the relative amplitudes of the diffracted light
beams, let us examine their directions of propagation and frequencies more closely.

DIRECTION
ULTRASONIC WAVE

/

INCIDENT
LIGHT BEAM

/ T I - ~_FLUID

0 L Z

QUARTZ CRYSTAL

Fig. 1. — Geometry of AO diffraction.

The easiest way to derive the deflection angles and the frequencies of the
scattered light beams, is to interpret the electromagnetic-acoustic interaction as a
photon-phonon collision process [8,13,23]. Recalling two elementary concepts of
quantum wave mechanics, i.e. frequency is proportional to energy, and wave number
is proportional to momentum, we express conservation of energy and momentum for
the interaction of the particles. Generally taking into account multiple interactions,
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Fig. 2a. - Diffraction spectra at ¢ =0 and @ # 0.
Fig. 2b. — Diffraction spectrum in p-xylene (@ = 0) (Parthasarathy [46]).
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Fig. 3a. — Multi-order Raman-Nath diffraction.
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Fig. 3b. — Single-order Bragg diffraction.

reveals that the scattered light must emerge in a spectrum whose frequencies and
wavenumbers are determined by the conditions :

w,= w- hw*, ()

k,=k- nk*, n=0,t£1,x2, .. (2)

Here w and k refer to the incident light wave ; w, and k, to the n-th order
emerging light wave, while the sound has an angular frequency w* and a wavevector
k*. Note that all symbols refer to the characteristics inside the acoustic medium.

Restricting ourselves to the case of one diffracted order (n= 1), and assuming
exact momentum matching and downshifted interaction, the corresponding wave
vector diagram is easily drawn (Fig. 4). Since | k*| < |k |, this triangle is
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Fig. 4. — Geometry of Bragg diffraction.

isosceles, i.e. |k, | = |k |. It follows that 6, =- @y, where @y, satisfies the
relation

. k* A Av*

TR Y &

wherein V is the sound velocity.

This condition, defining the Bragg angle @ g, is similar to the one used for X-ray
diffraction from the periodic arrangement of atoms in a crystal. As a consequence,
the incident light beam is deflected from its original direction through the angle 2@ .
If we introduce angle 6, for the direction of propagation of the r-th order light beam,
then from (2) we obtain

*
0,=¢- nz =<p-5é,n=0,i1,i2,..., (4)

provided all angles are sufficiently small.

The reader should be warned that the labelling of the diffraction orders
throughout this paper is consistent with the one in Raman-Nath’s original work
[42,43,48-52]. Hence, the positive label » will refer to the diffracted light beam which
is downshifted in frequency by an amount nw*, as in (1). In theoretical as well as
technical papers, written by (electrical) engineers, the positive phasor convention is
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used [25], consequently the positive label # would refer to the frequency upshifted
light beam of order n (w,= w+ nw* would replace (1)).

Anyway, the frequencies and directions of propagation of the diffracted light
waves are correctly and simply determined by (1) and (4), leaving only the ampli-
tudes and thereafter the intensities of the diffraction orders to be calculated.

In a series of extraordinary papers [42,43,48-52], Raman and Nagendra Nath
use at first geometrical arguments and lateron a differential equation method to
determine the amplitudes of the diffracted light beams. In their elementary theory,
Raman and Nagendra Nath [48] assumed the diffraction effect to be due to a simple
phase corrugation of the incident light caused by an acoustic variation of the index
of refraction. For engineers, phase modulated waves are known to be composed of
a carrier and a set of sidebands separated by w*, the amplitudes of which are the
Besselfunctions J, of the first kind and integral order . In mathematical terms, the
modulated output electric field can be represented as

E(xzt)=y(x,zt) exp i(wt- kz), (5)

assuming normal incidence for the input light. If we restrict ourselves to the case of
a simple sinusoidal sound field, the dielectric permittivity of the disturbed medium
can be written as

e(x,t)=¢,[€e,+ &, sin (w*t- k*x)]. (6)

where ¢, is the dielectric constant of vacuum and &, is the peak variation of the
relative permittivity €, of the medium.

For pure phase modulation due to the progressive sound field (6), y(x,z,¢) can
be expressed as an exponential function with purely imaginary argument, i.e.

s
12 sin(k*x- w* ) |. (7)

x(x,z,t) = exp

r

Using the well-known formula of Jacobi [54]

exp[(F icosx) z] = _Z (= i)"J,(z) exp(inx), (8)
which generates the Bessel functions of first kind and integer order #, (7) becomes

ke,z

2¢

x(x,z1t)= +§ J,,(

n=-oo

)exp[in(k*x— w*1)]. (9)

r

Substituting this result into (5) yields the Fourier expansion of the electric field
in the exit plane z= L:

E(x,Lt)= +Zi° J,(v) expli(nk*x- kL)] exp i[(w- nw*)t]. (10)
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In (10), the constant

ke,LzﬂelL (1)
2¢ eA

T T

V=

is known as the Raman-Nath parameter (RN parameter) and it is a measure of the

strength of the acoustic modulation of the light.
From (10) we learn that the amplitude of the »-th order diffracted light beam

simply is J,(v) ; hence the diffraction order irradiance /, is

I,(v)=J2(v), n=0,x1,=%2, ... (12)

Raman and Nagendra Nath [49] later generalized their phase modulation model
to account for oblique incidence. Without conceptual changes one can straightforwar-
dly obtain the closed form expression for the intensity of the n-th order diffracted light
beam

1,,(v’)=1i[v’sinc(—L%a—il—"i)], (13)
with
= co:qa: 2:‘(:;;;101;(19 B a,yf%ilos(p (e
and
sin x= T2 (15)

In a broader perspective, Raman and Nagendra Nath [42,51,52] no longer
restricted the diffraction effect to be exclusively due to phase modulation but took also
amplitude modulation into account. This led to their so-called generalized theory. Let
us give a synopsis of this since then well developed approach.

For oblique incidence, instead of (5) we now will have

E(x,z,t) = x(x,zt) exp i[wt- k(x sing+ zcos@)] (16)

where the amplitude factor y(x,z,¢) is no longer restricted to the form (7), but still
must show the same periodic structure as the disturbing sound wave. Consequently,
by Fourier expension the function y(x,z,¢) can be decomposed into a sum of plane
waves

+ 00

x(x,2,8) = Ew ?,(z) exp in(k*x- w*t), (17)

n=-
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hence,

E(xz1)= L @,(2)exp i[nk*- ksing)x- kzcosg] exp i(w- nw*)i (18)

From (18) it is easy to rederive (1) and (2), whereas the unknown amplitudes
@.(z) will follow from inserting the expansion into the appropriate wave equation
for the medium with slowly varying permittivity (6), i.e.
62E+ 0’E = U,e(x,1) oL (19)
ox? a2 T HestR
This substitution results in the celebrated Raman-Nath equations (called from now
on RN equations),

ds,
ac

2 -(B,.,- Bys1)=in(np-2asing) ¥, n=0,x£1, =2, ..., (20)

linking the amplitudes of neighbouring diffraction orders in a difference-differential
form. Expressing that there is no loss of energy in this AO diffraction effect, provides
system (20) with the appropriate (normalized) boundary conditions

?,(0)=0,, n=0,%x1, x£2, ... (21)

In (20), we introduced the phase variable

ke, z vz

2e,cosp L

the diffraction regime parameter

2e ,A*

il ol 3
p 81/1*2 ’ (2 )

and

2¢e.4

e’ (24)

a=

the latter two containing the ratio of wavelengths of light and ultrasound.
For a physical interpretation of the parameter a, we define the Bragg angle ¢}’
of higher order in the familiar way by
m _Hk* nd _np

Si]’l(pBR —W=2ﬂ—*=2—a s n= O, + 1, + 2, cee . (25)
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Then, (20) can be rewritten as

e,

zdﬁ"

. sing
- ¢ I M ¢ + = 2 ( 1— —T____) ¢ ® 26
( n-1 n I) mp Sll’l(pé}? n ( )

Hence, it is clear that a sing is a measure of the incidence angle in units of the
Bragg angle @ .

After Klein and Cook [21], quite often, the parameter

_ 2mAL

/1*2 ’ (27)

Q=pv

is introduced to devide between Bragg and Raman-Nath diffraction regimes. Since
this parameter is independent of the amplitude &, of the disturbing sound wave, Q
is necessary but not sufficient for an accurate distinction between both regimes
[12,15,16,17,18,30,40,41,47,53]. Furthermore, scrutinizing the paper of Klein and
Cook reveals, that one should use [15,16,17,29,53]

] (28)

rather than Q to deal with cases of oblique incidence.

In our previous work, we mainly used p as a regime parameter, since this one
gives a measure of the amplitude grating impressed on the light wave. Indeed,
returning to (20), for p=0 we obtain the well-known Besselfunction solution

3,(0) =y (2 Jex(- inbl), 29)
with
b=%asin<p. (30)
Under the supplementary restriction of normal incidence (@ = 0), (26) reduces
to
2,(0) =J,(0), (31)
with
ke,z mez vz
AN i’ o W] N 32
¢ 2e, €A L £52)

From (29), resp. (31), at z= L we rederive the results (13), resp. (12), as
obtained from RN’s early phase modulation model.

For normal incidence, we obviously have =, v’=vand Q'= Q.

Let us remark that, recently, there was a revived interest in equations of the RN
type, not only for their relevance to acousto-optical problems [27] and holography
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[14,28], but also to the study of other physical phenomena, such as stimulated
Compton scattering [6], stimulated Cherenkov emission, and to the theory of the free
electron laser [9].

In the following we shall restrict ourselves to normal incidence of the light, i.e.
@ =0, so that the system of RN equations reads

d®,

2 T (Byi- @) =in’p®,, n=0,+1,%£2, ... (33)
with boundary conditions

B,(0)=0,,n=0,=1,£2, ... (34)
It has been shown [32,38] in the case of normal incidence, that

2 .(O=G1D" 2,00, (35)
so that the system (33) can be simplified into

ddng) + @,=0, (36)

2ddqé"-(¢,,_1- @.,)=in*pd,, n=12,.., (37)
with boundary conditions

#,0)=0,,,n=0,1,2, ... (38)

Eq. (32) has as immediate consequence that

I,(O=1,0), (39)

meaning that for normal incidence of the light, the diffraction pattern is symmetric
with respect to the zero order.

The latter system has been solved exactly by a method called the “generating
function method” (GFM) [26,37], leading to an infinite series expansion for the
amplitudes @,({) containing the Fourier coefficients of the even periodic Mathieu
functions ce,,(x,q). Later an equivalent method, the “modified generating function
method” (MGFM) [15,16,17,34,35,36] has been deviced, starting directly from the
wave equation (19), without passing through the RN equations, and giving the same
solution. The exact solution obtained by those methods does not give expressions in
closed form, and in order to perform numerical calculations, one should have the
disposal of extensive tables of the Fourier coefficients of the periodic Mathieu
functions. The existing tables of those functions are either too restricted [1] or are
related to Mathieu functions which are not yet expressed in the canonical form [7]
used nowadays [2,31]. This is the reason why in the present study we shall pay close
attention to approximate and numerical solutions of the system (36,37) with
boundary conditions (38).
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In Section 1 we give a survey of some approximate methods. Section 2 considers
in detail one of those methods (the MN-th order approximation method) which
reduced to an eigenvalue problem, is especially suited for numerical treatment. In the
next section the results are compared with experimental data of Klein and Hiedemann
[20,22] and in Section 4 comparison is made with other approximations. Finally in
Section 5 some further considerations with respect to the N-th order approximation
method are expounded.
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NOMENCLATURE

permittivity, magnetic permeability of vacuum

wave length, wave number, frequency, angular frequency, speed
of light (in medium)

wave length, wave number, frequency, angular frequency, speed
of sound (in medium)

dielectric permittivity of the disturbed medium

relative permittivity (undisturbed medium)

maximum variation of the linear relative permittivity (disturbed
medium)

amplitude of the (scattered) electric field (disturbed medium)
acousto-optic interaction length along the z-axis

direction of sound propagation

direction of light propagation (at normal incidence)

time

angle of incidence of light (in medium)

order of diffraction

Bragg angle of order » (in medium)

deflection angle of order # (in medijum)

amplitude (complex) of diffracted light wave of order n
complex conjugate of @,

intensity of spectral line of order n

Bessel function of the first kind of order n

Raman-Nath parameter or peak phase deviation

regime parameter

Klein-Cook parameter

acousto-optic

Raman-Nath

generating function method

modified generating function method
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1. Approximate solutions of the Raman-Nath equations (36,37)
1.1. Raman-Nath's elementary theory
The most simple approximation is obtained by putting p= 0. In this case the

infinite system (36,37) with boundary conditions (38), or the equivalent system (33)
with boundary conditions (34), has an exact solution (cf. Eq. (31))

g,(v)=J,(v), n=0,£1,x2, .., (40)
giving the intensities

L =1,m=Jiv), n=0,1,2, ... (41)

A proof based on the general solution of the system (33) with p= 0 is given in
Appendix A.

A comparison of this elementary theory with experiment was given by Klein
[20] and by Klein and Hiedemann [22] where zeroth and first order light intensities
vs v were plotted together with corresponding intensity measurements for Q= 0.94
(L=3.0cm), 1.26 (L=4.0cm) and 1.48 (L=4.7cm) (cf. Figs. 5 (p. 29), 6
(p. 30), 7 (p. 30), 8 (p. 31), 9 (p. 31), 10 (p. 32).

The approximate theory gives acceptable results only if v< 2 for Q= 0.94,
vS 1.5 for Q=126 and v< 1.3 for Q= 1.48. Those conditions are in agreement
with the theoretical limits established by Extermann and Wannier [10] as Q<< 2 and

ov< 2.
1.2. Perturbation method

In order to obtain an improvement of RN’s elementary theory a perturbation
method was developed by Mertens [32], putting

(O =J O+ pw (D) +p (D + ..., (42)

where the functions u,,({) and y,,({) could be expressed as converging power
series in ..Since y,,({) is of the form {*a,, (), Miller and Hiedemann [39] wrote
this solution as

2,(v)=J,(»)+ Qa, (N + Q*a,(v)+... (43)

Later, using the generating function method, Kuliasko ef a/ [26] were able to
express the solution up to the second order in p in a closed form, leading to the
compact formula for the intensities

I,(v)=J,(v) - (TR - ) JL()

720"

+ (160> = 3/, (v) J,(v) - SV*2(w)], n=0,%=1,%2,., (44)
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dl,({)
dt \l=v

One of the principal aims of Klein [20] and Klein and Hiedemann [22] was the
comparison of their measured light intensities with the intensities obtained by the
present theory. For Q= 0.94 there was satisfactory agreement between experiment
and theory for values of vup to 6.5 (cf. Figs. 5 (p. 29), 8 (p. 31) ; for 0= 1.26 there
was agreement for v< 4.5 (cf. Figs. 6 (p. 30), 9 (p. 31); and for 0= 1.48 the
agreement was rather poor, particularly for values of v larger than 3.5 (cf. Figs. 7
(p. 30), 10 (p. 32). Klein and Hiedemann conclude that the theory gives acceptable
results for experimental arrangements described by Qv < 8 and that an upper limit
of usefulness of the theory, allowing a reasonable range of values of v, is Q<< 1.25.
Anyhow, the perturbation method means a substantial improvement with respect to
the results obtained by the elementary RN theory.

where J,(v) =

1.3. The N-th order approximation method (NOA method)

We shall now discuss a totally different approximate method for solving the
system (36,37) ; it will form the basis of our numerical treatment of the problem. In
this framework we neglect the energy in the diffraction orders higher than N, i.e.
Beney= Puwsn = --. =0, so that the infinite system (36,37) is replaced by the
following truncated system of N+ 1 equations :

dg
_dé’.q"'l' ¢1=O,
@
2 ddc" - @, + B, =intp®,,n=1,2..,N-1, (45)
ds ,
27{1' By = IN*p By,

with the boundary conditions

#.(0)=0,,n=012,..N (46)

This procedure, called N-th order approximation (NOA) method was introdu-
ced by Nagendra Nath [43] for N= 1 (and, hence, restricted to the Bragg diffraction
regime). It was extended for arbitrary N by Mertens [33] in 1962 for the more
involved problem of superposed ultrasonic waves. In that paper the denomination
NOA method was coined. Numerically, however, the method had to be restricted to
N=2 (i.e. five equations), according to the computer facilities at that time. In two
recent publications [4,5], Blomme and Leroy derived finite analytical expressions for
the intensities using respectively N=2 and N= 3. A profound discussion of the
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accuracy of those 20A and 30A methods, in a wide range of the parameters p and
v, has been given in those papers.

To end this Section we give the formulae obtained by Nagendra Nath for N= 1,
expressed in p or equivalently in Q (= pv)

8v? sin? VQ*+ 8y
Q0+ 8V 4 '

SOV

o)
sin ,
0>+ 8V’ 4

Io(v)=1-p—2§i—8 sinZTv D +8=1-

(47)

4 v
IL.,(v) = 718 sin’ ) p’+ 8=
A derivation of those formulae, using one of the methods exposed in the next Section
is given in Appendix B.
Those expressions will be useful later for comparison with the numerical results.
At that place their validity shall also be discussed.

2. Solution of the truncated system (45)
with boundary conditions (46)

To integrate truncated RN systems several methods have been proposed, e.g. an
operator technique introduced by Benlarbi and Solymar [ 3] (extremely useful to treat
higher-order Bragg diffraction) and a Laplace-transform method [27]. In this paper
we will use two straightforward techniques :

(1) an eigenvalue method, leading to a characteristic equation of degree N+ 1, with
real roots ;

(2) the operational method of Heaviside-Jeffreys [ 19], leading to expressions for the
amplitudes in terms of determinants.

2.1. The eigenvalue problem

Assuming a solution of system (45) in the natural form
1.
B,= a,exp (f zs()

the corresponding eigenvalue problem would have a non-Hermitian matrix, the
condition for real eigenvalues thus being abolished. This slight problem, which is due
to the use of symmetry relation (35), can be easily overcome by introducing a
similarity transformation, realized by directly modifying the solution into

B, = V2 a, exp(% isC) , (48)

1
@, = a,exp (5 isC) =12 ..N.
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Substitution of (48) into system (45) leads to a system of linear homogeneous
equations for ay,a,,...,ay, which may be written in matrix form as

M-3sI).a=0, (49)
where I is the (N+ 1) x (N+ 1) unit matrix, a’= (g, a, ... ay) and M =
0 w2 0 ... 0
-i/2 p i 0. . - . 0
0 -i 4p i 0 .. o 0
0 . .. .0 -inpi 0. . ) 0 |(50)
. 0
0 . e .0 -i (N-1D%» i
0 ) C e . 0 - Np

isa (N+1)x (N+ 1) Hermitian matrix, the eigenvalues of which are real [11]. In
order to obtain a nonzero solution a of the linear homogeneous system (49), the
determinant of the coefficients must vanish :

det (M - sI) = 0. (51

In other words, we ought to calculate the N+ 1 real eigenvalues s, (k= 1,2,..., N+ 1)
of the Hermitian matrix M. The eigenvector a®®, with a®”=(a{”a{¥ ... a{P),
associated with the eigenvalue s, will then be determined by the linear homogeneous
system

M- s,1).a%=0. (52)

From the structure of the system (52), we may see that ai* # 0 and that a'¥
may be chosen real if # is even, and purely imaginary if » is odd. Furthermore, we
can choose a$” =+/2/2 (k=1,2,...,N+ 1) since any eigenvector is only determined
up to an arbitrary factor. The general solution of the truncated linear differential
system (45) may then be written as [11]

N+ 1

) ckexp(% isk(), (53)

k=1
N+ 1

1
@, = X c,a® exp (5 isk() ,n=12,.,N, (54)

k=1
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where the N+ 1 constants c, are real (as a consequence of the choices of a{* and
a'?). These constants follow from imposing the boundary conditions (46) to (53)
and (54):
N+1 N+ 1
Yoe=1, 0 ca®=0,n=12,..N (55)
k=1

k=1

Finally we can calculate the intensities in z= L :

N+1
L) = #() B =1-4 L ¢;e,sin’(s,- 507 (56)
Jj’?kl
N+ 1 o
L) = Be,(0) By () == 4 b c,caf’aP sin’(s, - 507 (57)
‘]!’<_k1 n= 1,‘.., N

where the bar stands for complex conjugate.

Needless to say that the characteristic equation (51), of degree N+ 1 in s, can
only be solved analytically for N= 3. Thus only in the latter cases explicit analytical
expressions for the intensities can be obtained [4,5,33,43]. Otherwise the problem
has to be treated numerically using the following steps :

(i) determine the eigenvalues and eigenvectors of the matrix M ;
(ii) next solve the linear system (55) for ¢, ;
(iii) substitute the results obtained from (i) and (ii) into Egs. (56) and (57).

We remark that the solution scheme of the eigenvalue problem sketched above
is particularly suited to computer algorithms.

2.2. Heaviside’s operational method

Now we will apply Heaviside’s operational method to the truncated system (45).
After Jeffreys [19, p. 237] we write p for d/d( and interpret p~ ' as the operation of
definite integration

¢
A =J Az)dz. (58)

0

The resulting subsidiary equations [ 19], which take the boundary conditions (46) into
account, are
—S¢0+2i¢1=-s
(pn*-s)@,-i®, +i®,,, =0, n=12,.,N, (59)
(pN* = s) By~ i®y., =0
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with s= - 2ip. This system is now to be solved as if p (or s) were a number. In
compact notation the system (59) can be written as

D® = - sE, (60)

where the almost Hermitian (N+ 1) x (N+ 1) matrix D is related to M through a
similarity transformation

D(s)=P(M - sDP" !, (61)

with P =1+ R, such that all elements r; of R vanish, except r, = /2 - 1.

Furthermore we have ®7=( @, @, &,... @,) and E"=(10...0), the latter
vector expressing the boundary condition. From (60) we obtain the formal solution
of the problem :

O=-sD'E, (62)
where D™ ! is the inverse of D. So, one explicitly has
- sDy .y _
B, = @D " 0,1,.... N, (63)

where D, ., stands for the cofactor of the element d,,,, of D (n=0,1,2,...,N).
Substituting s= - 2ip in (63) we find

2pF, ,.1(p) 2p
@,= ———"—(n=0,1,.,N-1), 8y= ——, 64
Fopy ) = F (64)

where F ,, (p) is the determinant

2p-i(n+ 1) 1 0 . 0
-1 2p-i(n+2)p1 0 . . 0
0 -1 Coe e . . 0
(65)
0 0
0 . e w0 =1 2p-i(N-1p 1
0 ) . .. .0 -1 2p- iN*p

and F(p) = (- D" det D(p).
Next, in order to express formulae (64) in the original variable {, we will apply
Heaviside’s expansion theorem [19, p. 238], i.e.

Ap) _ 40 %' Aay
B(p) ~ BO) % aB(ay)

N+ 1

exp(a,0), (66)
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where A(p) is a polynomial in p of the same or a lower degree than B(p);
a,(k=1,.., N+ 1) are the simple zeros of B(p) and B’'= dB/dp. Hence, (64) can
be replaced by

N+ 1 F (a )
g,=2 Y Lk exp(a), n=0,1,.,N-1;

L Ty o

(67)
N+ 1
exp(a,{)

By=2 ) —@Fr
N kgl F(a,)

Since from (61), the matrices D and M - sl are similar, one can prove that a, = % i
where s, represent the real eigenvalues of M. After some lengthy calculations we .
obtain the expressions for the intensities of the spectral lines

1 1
vt Fyy (Eisj) Fy (Eisk)
L(v)=1-16 )

j‘ﬁ:kl F (—;—isj) F (Eisk

sin’(s, - 57 (68)

1 I
N+l Fipe (Eisj) Fipt (Eisk)
L(»=-16 ) 1 __i__sinz(%-sk)zv, (69)
j:,i:kl F (*2‘15‘1) F <§isk

n=1.2,..,N, with F,,, (%isj) =1, and where we have taken into account that the
determinants F, ., (%isj) and Fl (%isj) are either real or purely imaginary. In order to
simplify the calculations of the determinants it may be advantageous to use the
following recursion relations :

Flj(p) = {dp= UZP)F1J+1(P) + F1J+2(17), Fl,N+1 =1, FI,N+2 =0
F'(p)=2F,(p)+2pFi;(p)+2F,(p); (70)
Fi,(p) =2F ;.1 (p) + 2p- ii’p)Fi ;.1 (P) + F1;00(p), j=1,...,N.

It is clear, especially regarding (61), that the eigenvalue method (Subsection
2.1) and Heaviside’s operational method (Subsection 2.2) are completely equivalent.

At this point it is perhaps worthwhile to comment on the paper by Leroy and
Claeys [27] wherein a Laplace transform method is used to integrate the truncated
system (45). To begin with the Laplace transform F(s) = <[f(z)] = [, f(z)€ *dz
imposes the function f(z) to be defined in a domain [0,<| for the variable :z.
However, the functions @,({), with (= me, z/Ae, describe the amplitudes of the
diffracted light in the finite domain [0,v], where the ultrasonic field is active. So
without either changing the variables, extending the domain of the function towards



APPROXIMATE AND NUMERICAL METHODS IN ACOUSTO-OPTICS 29

[0,0o[ or introducing a Heaviside unit function restricting the domain to [0,L], the
use of a Laplace transform in the present form is physically inadmissible. To support
this case we refer to Jeffrey’s comments [ 19, pp. 458,459] on the Laplace transform,
where next to physical arguments, mathematical plea in favour of Heaviside’s
operational method is given. Secondly the calculation of the inverse transforms
@.({) in Leroy and Claeys’ paper leads to rather complicated infinite series of Bessel
functions, contrary to the finite expressions for the amplitudes obtained by Heaviside’s
expansion theorem used above.

3. Comparison of the different approximate methods with experimental results

In Fig. 5(Q=0.94), Fig. 6 (Q= 1.26) and Fig. 7 (Q = 1.48) we compare curves
for I, vs vobtained from RN’s geometrical theory [48], Mertens’ perturbation theory
[26,32] and the NOA method (for N= 7) with the experimental results of Klein and
Hiedemann [22]. In Fig. 8 (Q=0.94), Fig. 9 (Q=1.26) and Fig. 10 (Q=1.48)
curves for I, vs v obtained with the same approximate methods are compared with
the experimental points obtained by Klein [20]. It must be remarked that in the
experiments of Klein, according to a finite-amplitude distortion of the sound wave an

100 T T T T T T T T T

B Q=094 _|
Io(o/o)
80F &4 0 | —===-- RAMAN-NATH THEORY .
R A PERTURBATION THEORY |
NOA METHOD
60 000 00 EXPERIMENTAL POINTS .
40 |
20} 7
7
i /,/ \\ '/ 4\‘\. N
/// \\ //// \\\‘\s
0 ! e’ | 1 | Doty ! : '
v

Fig. 5. — Zeroth-order intensity versus RN parameter for Q= 0.94.
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Fig. 6. — Zeroth-order intensity versus RN parameter for Q= 1.26.
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Fig. 7. — Zeroth-order intensity versus RN parameter for Q= 1.48.
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Fig. 8. — First-order intensity versus RN parameter for Q= 0.94.
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Fig. 9. — First-order intensity versus RN parameter for Q= 1.26.
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Fig. 10. — First-order intensity versus RN parameter for Q= 1.48.

asymmetric diffraction pattern was observed. In all plots of I, the average of the
measured positive and negative light intensities is shown and in no case the measured
intensities differ at most 5 percent. From numerical calculation, it was found that, for
the considered values of O, @,=0 for j= 7 ; a typical example is shown in Fig. 11
for Q= 0.94. Hence, we have computed the intensities (56), (57) and (68), (69) up
to N= 7. The theoretical results perfectly coincide since both methods considered are
equivalent ; not surprisingly concerning CPU time, calculations with Heaviside’s
operational method are about 25% faster than the ones based on the eigenvalue
method. For the three considered values of Q the theoretical curves fit the experimen-
tal points for 7, and I, perfectly. As discussed earlier (Subsection 1.1) it is clearly
seen from the figures that the deviation from RN’s elementary theory is already
apparant for rather low values of v. Evidently there is an excellent fitting with the
experimental points whereas the perturbation method fails (cf. the discussion in
Subsection 1.2).

4. Comparison of the different approximate methods to one another

In this section the NOA method, with N ranging from 7 to 195, is carried out
for selected values of the Klein-Cook parameter Q (between 0.1 and 50) and with
the RN parameter v ranging from 0 to 15. The zeroth and first order intensities thus
obtained are compared with either the squared Bessel function expressions or with
the squared sine expressions obtained from the 10A method (Egs. (47)).

In Fig. 12 we compare the curves for /, (v) and /,(v), computed from (56) and
(57) (N=1) for 0=0.1 and Q= 1, with the squared Bessel functions J3(v) and
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Fig. 12. — Zeroth and first-order intensities versus RN parameter calculated with NOA method for
0=0.1 (dotted lines) and Q=1 (full lines) ; the elementary RN approximations J (v) and
J3 (v) match exactly the calculated intensities for Q= 0.1.

J?(v). Remark that for Q=0.1, the zeroth and first order intensities perfectly
coincide with the corresponding Bessel function expressions. For Q=5 and Q= 50,
I,(v) and I,(v) are respectively shown in Figs. 13 and 14. For O0=0.1 it was
necessary to take N= 15, i.e. a system of 16 coupled equations had to be taken into
account. For all other values of Q a value of N= 7 was sufficient. To test our numerical
procedure based on the eigenvalue method we have compared our results with similar
ones computed by straightforward numerical integration of the system (45) by a
discrete step method [21,24,45]. From Figs. 11 to 13 (and additional figures for
stepwise values of Q between 0.01 and 100, not shown here) we may conclude that

— For 0<K1 (i.e. 0%0.1) the intensities /, and [, calculated with the NOA
method coincide practically with squared Bessel functions for the whole range of
v considered ;

— For 0.1 < Q< 2 the intensities fit the squared Bessel function expressions up to
a threshold in the close neighbourhood of v= 2.405 (the first zero of J, (v)) ;

— For 2 < 02 10 the intensities considerably deviate as well from the squared Bessel
functions as from the squared sine expressions (for Q=5 there is only a good
fitting with the latter up to v=2) ;

— For 0>1 (i.e. 0> 10), up to a certain threshold v, (v, =5 for Q= 150),
practically all the energy of the incident light is concentrated in I, so that no
diffraction occurs ; above that threshold diffraction only excites first orders (Bragg
diffraction) ; the fitting of the NOA curves (N = 7) with the squared sine curves
(N=1) is excellent up to 2v, (= 10 for Q= 50).
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Fig. 13. — Calculated (full lines) and approximate (dotted lines, corresponding to Eq. (47)) zeroth and
first order intensities for Q= 5.
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Fig. 14. — Calculated (full lines) and approximate (dotted lines, corresponding to Eq. (47)) zeroth and
first order intensities for Q= 50.
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5. Further new results obtained with the NOA method.

s argued in recent work [12,14,53], p, v and Q= pv are relevant (though
dependent) parameters for the investigation of criteria for multi-order RN diffraction
or two-order Bragg diffraction. Based on our numerical integration method, outlined
above, we present in Fig. 15 a three-dimensional plot of /; as function of Q and v
(similarly one could use p and v). The cross-sections correspond to constant values
of Q ranging from 0 to 10 with steps of 0.25. Analogously in Fig. 16 [, is plotted
as a function of Q and v. In both figures one may clearly observe the evolution from
the RN regime (Q << 1) to the Bragg regime (Q>> 1), passing through all inter-

Fig. 15. — Three-dimensional plot of /, vs. Q and ».
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.

Fig. 16. — Three-dimensional plot of 7, vs. Q and v.

mediate steps. In Fig. 17 we show curves for constant /, in a v,Q-plane. In order to
realize a chosen constant value of /, this plot allows the selection of corresponding
characteristic couples (v,Q). Fig. 18 presents an analogous plot for /,. In Figs. 19,
20, curves of constant [, respectively /,, are depicted in a Q, p-plane, from which
pairs (Q,p) may be obtained. It is apparant in both figures, that the behaviour of the
iso-curves drastically changes when passing from the region where v<< 4 to the one
where v> 4. In the region above the line p= Q/4 (v<<4) the iso-curves present a
rather simple structure, while in the region below the line p= Q/4 (v> 4) they are
behaving rather chaotically. A more profound analysis and interpretation of the results
will be presented later.
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Fig. 17. — Curves for constant I, in the v,Q-plane.
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Fig. 19. — Curves for constant /; in the Q p-plane.
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Fig. 20. — Curves for constant /, in the Q p-plane.
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APPENDIX A

General solution of the infinite system (33) for g = 0 (cf. [51])

For p =0 the system (33) simplifies into

d¢

2 (Beam 020 n=0 £ 1L £ (A1)

with boundary conditions
2,(0) = 0. (A2)

According to a theorem of Sonine [44], a solution 3,({) of the system (A1)
with initial values @,(0), may be developed into a series of Bessel functions

3,(0) = 2,(0) Jo(0) + Z [ 2,.,(0)+ (- )" ,,W(O)]J 0 (A3)
n=0,%x1,%£2,
Using (A2) this series becomes
8,(0)=Jo() 8,0+ Z [0n-mot (= 1) 6n+m01.1 (C)
n=0,%1,%2, o
so that
() = Jo(0), B.(D)=J, () (n>0), 8..(0)=(- DV, (0) (n>0). (AS)
Recalling the property of the Bessel functions, J_,({) = (- 1)"J,({), the general
solution of (A1) satisfying the boundary conditions (A2) may finally be written as
2(0)=J,(0),n=0,£1,%£2, ... (A6)

APPENDIX B

An example of the use of the eigenvalue problem
developed in subsection 2.1

We shall take N = 1, which will lead to an analytical solution of the problem. The
truncated system (45) becomes
o,
ra
az,
ac

+ @, =0,
(BI)

2 = ¢0=ip¢l’



APPROXIMATE AND NUMERICAL METHODS IN ACOUSTO-OPTICS 43

with boundary conditions
2(0)=1, &(0)=0. (B2)

As a solution we assume

@, =2 a, exp (% z‘s() , (B3)
@, = a, exp (% isC) , (B4)

Upon substitution in Egs. (B1) the characteristic equation follows

- iﬂ

det(M - sI) = e =s'-ps-2=0, (BS)
where the matrix

we b ) e
is Hermitian. From (BS) the (real) eigenvalues are easily obtained :

5123 (P49, (B7)

$2=5 (0= V0 + B). (B8)
The equation for the eigenvalues is

M-s0).a%=0. (B9)
For k=1 we thus obtain

- 5,af’ + i/2a{" =0,

(B10)

- 24"+ (p- 5 a}" =0,

where the second equation is in fact redundant. A solution may be chosen as

oo 7
2
. (BI1)
a’= - 2 s,
2
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Similarly, we find for k=2

aéz) = ﬁ

2 9
(B12)
I
al?= - 3 5z
Hence, the amplitudes can be written as (cf. Egs. (53) and (54))
| 1
B, = ¢, exp (5 isi€ ) + ¢, eXp (5 iS50 ) , (B13)
(n 1, ©) 1.
@, =c, al" exp 3 is;C | +c¢ya”exp 3 is,C | . (B14)
The constants are determined by the boundary conditions (B2), hence,
cte=1, (B15)
@V + e,al? = 0.
Taking into account (B11) and (B12) we obtain
G=——2 | g=SL (B16)

$1= 85 S1= 8

Calculating the intensities from the amplitudes (B13) and (B14), therefore using the
values of the constants ¢, and ¢,, we find

45,5,

I,= 8,%,=1+
o (s1-52)

2sm (sl-sz)(, (B17)

= 24 éi‘lz ( 1 ) sin’ _(Sl' 5y C (BI8)

$1=8;

Finally, introducing the explicit expressions for the eigenvalues (Egs. (B7) and
(B8)) we recover Nagendra Nath’s classical results

10=1—p sin’ 1/p+ ¢ (B19)
I,,=1 = 4 sm 1/p+ e (B20)
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SAMENVATTING

De bedoeling van onderhavige studie is een overzicht te geven van klassieke en
meer recente benaderde methoden in het akoesto-optisch diffractievraagstuk en hun
numerieke resultaten te vergelijken met de experimentele gegevens van Klein en
Hiedemann.

In de inleiding wordt de diffractie van licht door ultrageluiden beknopt beschre-
ven en wordt aangetoond, dat de golfvergelijking van het licht, dat zich voortplant in
een vloeibaar medium door een ultrageluidsgolf gestoord, aanleiding geeft tot een
oneindig stelsel differo-differentiaalvergelijkingen voor de amplituden van de gedif-
fracteerde lichtgolven ; dit stelsel is het zg. Raman-Nath (RN) stelsel, waarvan de »°
vergelijking (n= 0, % 1, £ 2,...) het verband geeft tussen de amplituden van de orden
n-1, nen n+ 1 ; deze amplituden voldoen aan eenvoudige randvoorwaarden. Drie
parameters spelen hierbij een belangrijke rol: (1) de zg. Raman-Nath parameter
v=me,L/e,A; (2) de regime-parameter p=2¢,4%/e,A*?; (3) de zg. Klein-Cook
parameter Q= pv=2nAL/A**. Terwijl de eerste twee afhankelijk zijn van ¢,, die een
maat is voor de sterkte van de ultrageluidsgolf, is de derde parameter daarvan
onafhankelijk. In een eerste paragraaf wordt een overzicht gegeven van drie benaderde
methoden voor de behandeling van het Raman-Nath stelsel.

(1) p=0, hetgeen benaderd verwezenlijkt wordt voor grote golflengten van de
ultrageluiden. In dit geval kan het oneindig RN stelsel exact worden opgelost, hetgeen
leidt tot dezelfde resultaten als deze bekomen met de elementaire geometrisch
optische theorie van Raman en Nagendra Nath. De intensiteiten van de verschillende
diffractielijnen worden in dit geval gegeven door de eenvoudige uitdrukkingen
I,=JA(v), waarbij J,(v) de Besselfunctie van orde n voorstelt. Deze benaderde
theorie wordt door Klein en Hiedemann met hun experimentele resultaten vergele-
ken. Ze blijkt aanvaardbaar voor v< 2 als 0= 0.94, v< 1.5 als 0=1.26 en v< 1.3
als Q= 1.48.

(2) Een verbetering van deze elementaire RN theorie wordt bekomen door de
storingstheorie, die vooreerst door Mertens werd opgesteld, waarbij de amplitude van
iedere gediffracteerde golf als een reeksontwikkeling naar p (of naar Q) wordt
voorgesteld, en waarvan de eerste term J,(v) is. Vergeleken met de experimenten van
Klein en Hiedemann betekent ze een verbetering t.o.v. de elementaire RN theorie. De
overeenstemming tussen theorie en experiment is echter niet bevredigend voor
v>6.5als 0=0.94, v>4.5als O0=1.26 en v> 3.5 als Q= 1.48.

(3) De NOA methode (N orde approximatie). Deze methode bestaat er in het RN
stelsel te benaderen door de gediffracteerde orden hoger dan de M te verwaarlozen,
zodat het gesymmetriseerde RN stelsel nog maar N+ 1 vergelijkingen bevat. Deze
methode werd voor het eerst in 1939 door Nagendra Nath voor N= 1 opgesteld en
later door Mertens tot willekeurige waarden van N uitgebreid.

De tweede paragraaf behandelt de oplossing van dit eindige (afgebroken) stelsel
differentiaalvergelijkingen met gegeven randvoorwaarden. Twee methoden worden
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gebezigd : (1) een eigenwaardenmethode die leidt tot een karakteristieke vergelijking
van de graad N+ 1 met reéle wortels (eigenwaarden) ; de intensiteiten worden dan
uitgedrukt als een eindige som van kwadraten en sinussen, die functie zijn van v en
van de verschillen van de eigenwaarden twee aan twee ; de coéfficiénten zijn athan-
kelijk van de componenten van de eigenvectoren ;

(2) de operationele methode van Heaviside-Jeffreys, die de amplituden van de
gediffracteerde golven uitdrukt in functie van determinanten.

Beide methoden, die trouwens gelijkwaardig zijn, zijn uitstekend geschikt voor
de behandeling van het akoesto-optisch vraagstuk met behulp van een computer. De
vergelijking van de NOA methode met de experimentele gegevens van Klein en
Hiedemann maakt het onderwerp uit van de derde paragraaf. Uit de computerbereke-
ningen blijkt dat voor de beschouwde waarden van Q (0.94, 1.26, 1.48), N=7 een
uitstekende benadering geeft, die bovendien buitengewoon goed bij de experimentele
punten aansluit.

In paragraaf 4 worden de verschillende behandelde benaderingsmethoden
systematisch met elkaar vergeleken voor Q= 0.1, 1, 5 en 50.

In een laatste paragraaf tenslotte worden nog enkele nieuwe resultaten aange-
haald, bekomen door middel van de NOA methode, nl.,

— de oppervlakken van [/ en /, als een functie van Q en v;
— de isokrommen voor /; en [, in een v,Q-diagram ;
— de isokrommen voor /, en [, in een Q,p-diagram.

Grondige interpretatie van deze resultaten en het eventueel verband met een
keuze van p of Q voor het bepalen van het diffractieregime zal nader worden
onderzocht.
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