PHYSICAL ACOUSTICS Fundamentals and Applications

Edited by

Oswald Leroy
Katholieke Universiteit Leuven Campus Kortrijk Kortrijk, Belgium

and

Mack A. Breazeale

The National Center for Physical Acoustics University of Mississippi University, Mississippi

PLENUM PRESS • NEW YORK AND LONDON

THE NTH ORDER APPROXIMATION METHOD IN ACOUSTO-OPTICS AND THE CONDITION FOR "PURE" BRAGG REFLECTION

R. A. Mertens*, W. Hereman†, J.-P. Ottoy‡

*Instituut Theoretische Mechanica, Rijksuniversiteit Gent B-9000 Gent, Belgium

†Department of Mathematics, Colorado School of Mines Golden, CO 80401, U.S.A.

‡Seminarie voor Toegepaste Wiskunde & Biometrie Rijksuniversiteit Gent, B-9000 Gent, Belgium

INTRODUCTION

It is well-known that Bragg diffraction in acousto-optics occurs if the incident light makes a Bragg angle with the ultrasonic wave planes and the diffraction spectrum only consists of the orders -1, 0 and +1

diffraction spectrum only consists of the orders -1, 0 and +1.

"Pure" Bragg reflection arises if the diffraction results in a spectrum of orders 0 and +1, with evanescent order -1 (Figure 1). Theoretically those phenomena were respectively described by Nagabhushana Rao [1] and Phariseau [2], approximating the Raman-Nath system for the amplitudes of the diffracted light waves. Those results may be rederived from the NOA method [3] for N=1 and from the MNOA method [4] for M=0, N=1 and treated as eigenvalue problems. We shall compare both solutions with the experimental data of Klein et al. [5]. Further we employ the 1OA method to investigate the occurrence of "pure" Bragg reflection for large and increasing values of the Klein-Cook parameter Q and the Raman-Nath regime parameter ρ .

THE NOA AND MNOA METHODS

The starting point for those methods is the Raman-Nath system for the amplitudes of the diffracted light waves [6]

Figure 1. Geometry of single-order Bragg diffraction ("pure" Bragg reflection).

$$2\frac{\mathrm{d}\phi_{\mathrm{n}}}{\mathrm{d}\zeta} - (\phi_{\mathrm{n-1}} - \phi_{\mathrm{n+1}}) = \mathrm{i}\rho\mathrm{n}(\mathrm{n} + \beta)\phi_{\mathrm{n}},\tag{1}$$

with boundary conditions

$$\phi_{n}(0) = \delta_{n0}$$
 , $n = 0, \pm 1, \pm 2,...$ (2)

In (1), $\zeta = \pi \varepsilon_1 z/\varepsilon_r \lambda \cos\varphi$, $\rho = 2\varepsilon_r \lambda^2/\varepsilon_1 \lambda^{*2}$, $\beta = -(2\lambda^*/\lambda)\sin\varphi$, where φ is the angle of incidence of the light (the z-axis being parallel to the ultrasonic wave fronts), ε_1 the maximum variation of the relative permittivity ε_r , λ the wave length of the light in the medium, λ^* the wave length of ultrasound. If $\beta = -p$, with p integer, then $p(\lambda/2\lambda^*) = \sin\varphi_{BR}^{(p)}$, where $\varphi_{BR}^{(p)}$ is called the Bragg angle of order p. We also introduce the Raman-Nath (RN) parameter $v = \zeta L/z$, L being the width of the ultrasonic field, and the Klein-Cook parameter $Q = v\rho$. In the NOA method [3] one neglects the energy in the diffraction orders higher than N and lower than -N. The truncated system can then be solved by an eigenvalue method. For N = 1 we obtain for $\beta = -1$ ($\varphi = \varphi_{BR}^{(1)}$)

$$I_{-1} = 4 [s_1 s_2 S_1 \sin^2(s_1 - s_2) \frac{v}{4} + \text{cycl.}],$$
 (3)

$$I_0 = 1 + 4 [s_1 s_2 S_1(2\rho - s_1)(2\rho - s_2) \sin^2(s_1 - s_2) \frac{v}{4} + \text{cycl.}],$$
 (4)

$$I_{+1} = 4 [S_1(2\rho - s_1)(2\rho - s_2) \sin^2(s_1 - s_2) \frac{v}{4} + \text{cycl.}],$$
 (5)

with

$$S_1 = 1/(s_1 - s_2)^2(s_1 - s_3)(s_2 - s_3),$$
 (6)

and where s1, s2, s3 are the single real roots of the characteristic equation

$$s^3 - 2\rho s^2 - 2s + 2\rho = 0. (7)$$

Figure 2. I_0 versus v (left) for Q=9.3 and $\beta=-1$ calculated from Phariseau's formula (8) $(-\cdot\cdot\cdot-)$ and from Nagabhushana Rao's formula (4) $(--\cdot)$ compared with experimental data of Klein et al $(\times\times\times)$. I_1 versus v (right) calculated from Equation (9) $(-\cdot\cdot\cdot-)$ and from (5) (---) compared with experimental results of Klein et al $(\circ\circ\circ)$ and I_{-1} versus v from (3) for the same values of Q and B.

Figure 3. $I_0($ ——), $I_1($ ———) and $I_{-1}($ ——) versus v at Bragg incidence ($\beta=-1$) respectively calculated from (4), (5), (3) for $Q=10,\ 20,\ 30,\ 50.$

Those results are in fact Nagabhushana Rao's formulae [1] written in a more explicit form, for $\beta=-1$. In the MNOA method [4] it is assumed that only M negative and N positive orders are present in the diffraction spectrum, with M \leq N for $\varphi>0$. Considering M = 0, N = 1 and using the eigenvalue method we obtain, for perfect Bragg diffraction $\varphi=\varphi_{\rm BR}^{(1)}$ ($\beta=-1$), Phariseau's well-known results [2],

$$I_0 = \cos^2(v/2) \tag{8}$$

$$I_1 = \sin^2(v/2). \tag{9}$$

NUMERICAL RESULTS

In Figure 2 the intensities I_0 (left) and I_1 and I_{-1} (right) versus v are shown. The various curves are calculated with formulae (8,9) and with (3), (4), (5). Both sets of theoretical results are compared for Q = 9.3 with experimental data obtained by Klein et al. [5]. The fitting of the 1OA curves with the experimental points is excellent. Unfortunately the data are restricted to the domain $v \in [0,4]$. In this region for v there is a rather good

agreement with Phariseau's results, but it fails beyond $v \approx 5$, due to the fact, that from thereon I_{-1} is no longer negligible. Hence, we can conclude that for Q=9.3 there is only "pure" Bragg reflection up to $v\approx 5$.

In Figure 3 we represent the curves for I_0 , I_{+1} and I_{-1} versus v, calculated with the 1OA method at Bragg incidence (Equations (3), (4), (5)), for increasing values of the Klein-Cook parameter, namely Q = 10, 20, 30, 50. The larger the value of Q, the better the condition for "pure" Bragg reflection is satisfied. This is because the intensities I_{-1} decrease with higher values of v. Incidentally, the deviation of the curves for I_0 and I_1 from Phariseau's theory becomes small with larger Q.

Finally, in Figure 4 we show I_0 , I_{+1} and I_{-1} versus v, computed from Equations (3), (4) and (5) at Bragg incidence, but now for increasing values of the regime parameter, i.e. $\rho=1$, 5, 10 and 20. Similar calculations were performed for $\rho=30$, 40 and 50, but the results were identical with those for $\rho = 20$. Observe that for $\rho = 1$ most values of I_{-1} are too large, and second order intensities are not negligible, so that this case does not illustrate Bragg reflection very well. But for $\rho \geq 5$, the calculated values of I_{-1} keep decreasing, practically vanishing for $\rho = 20$. Furthermore, I_0 and I_{+1} are nearly represented by Phariseau's formulae (8) and (9). This shows that approximately for $5 \le \rho \le 20$ there is near Bragg reflection, whereas for $\rho \ge 20$ we have

Figure 4.), $I_1(---)$ and $I_{-1}(---)$ at Bragg incidence calculated from (4), (5), (3) for $\rho=1,\ 5,\ 10$

"pure" Bragg reflection. Hence, it is clear that both the parameters $\, {\bf Q} \,$ and $\, \rho \,$ are relevant for determining the condition for Bragg reflection.

REFERENCES

- [1] K. Nagabhushana Rao, Diffraction of Light by Supersonic Waves Part 1, Proc. Indian Acad. Sci., 9A:422, (1939).
- [2] P. Phariseau, On the Diffraction of Light by Progressive Supersonic Waves. Oblique Incidence: Intensities in the Neighbourhood of the Bragg Angle. Proc. Indian Acad. Sci. 44A:165 (1965)
- Angle, Proc. Indian Acad. Sci., 44A:165, (1965).

 R. Mertens, W. Hereman, and J.-P. Ottoy, The Raman-Nath Equations Revisited. II. Oblique Incidence of the Light Bragg Reflection, in: "Ultrasonics International 87 Conference Proceedings", Butterworth, Guildford (1987).
- [4] E. Blomme, and O. Leroy, Diffraction of Light by Ultrasound at Oblique Incidence: A MN-Order Approximation Method. Acustica. 63:83, (1987).
- Incidence: A MN-Order Approximation Method, Acustica, 63:83, (1987).

 [5] W.R. Klein, C.B. Tipnis and E.A. Hiedemann, Experimental Study of Fraunhofer Light Diffraction by Ultrasonic Beams of Moderately High Frequency at Oblique Incidence, J. Acoust. Soc. Am., 38:229, (1965).
- [6] C.V. Raman and N.S. Nagendra Nath, The Diffraction of Light by High Frequency Sound Waves. Part V: General Considerations. Oblique Incidence and Amplitude Changes. Proc. Indian Acad. Sci., 3A:459 (1936).
- Incidence and Amplitude Changes, Proc. Indian Acad. Sci., 3A:459, (1936).

 [7] G. Plancke-Schuyten and R. Mertens, The Diffraction of Light by Progressive Supersonic Waves. Oblique Incidence of the Light. II. Exact Solution of the Raman-Nath Equations, Physica, 62:600, (1972).