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INTRODUCTION

It is well-known that Bragg diffraction in acousto—optics occurs if the
incident light makes a Bragg angle with the ultrasonic wave planes and the
diffraction spectrum only consists of the orders —1, 0 and +1.

"Pure" Bragg reflection arises if the diffraction results in a spectrum of
orders 0 and +1, with evanescent order -1 (Figure 1). Theoretically those
phenomena were respectively described by Nagabhushana Rao [1] and Phariseau
[2], approximating the Raman-Nath system for the amplitudes of the diffracted
light waves. Those results may be rederived from the NOA method [3] for
N =1 and from the MNOA method [4] for M = 0, N = 1 and treated as
eigenvalue problems. We shall compare both solutions with the experimental
data of Klein et al. [5]. Further we employ the 10A method to investigate the
occurrence of '"pure" Bragg reflection for large and increasing values of the
Klein—Cook parameter (@ and the Raman—-Nath regime parameter p.

THE NOA AND MNOA METHODS

The starting point for those methods is the Raman-Nath system for the
amplitudes of the diffracted light waves [6]
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Figure 1. Geometry of single—order Bragg diffraction ("pure" Bragg reflection).

Physical Acoustics, Edited by O. Leroy and M.A. Breazeale
Plenum Press, New York, 1991 505




SO ————————

+ e v R e

2988 (4u1 = duu) = ipn(n + B, (1)
with boundary conditions

¢n(0) = 6[)0 ’ n = 0, il, i2,.... (2)

In (1), ¢ = 7esz/erAcosp, p 2erA2feh*2, f = —(2)+/))sing, where ¢ is the
angle of incidence of the light (the z—axis being parallel to the ultrasonic wave
fronts), €; the maximum variation of the relative permittivity e, A the wave
length of the light in the medium, A* the wave length of ultrasound. If § = —p,
with p integer, then p(1/21*) = sinwég), where Wég) is called the Bragg angle
of order p. We also introduce the Raman—Nath (RN) parameter v = (L/z L
being the width of the ultrasonic field, and the Klein—Cook parameter Q = uvp.
In the NOA method [3] one neglects the energy in the diffraction orders higher
than N and lower than -N. The truncated system can then be solved by an

eigenvalue method. For N = 1 we obtain for f = -1 (¢ = ‘”1(3111))

I; = 4 [518:S; sin?(s; — s) ;1{) + cycl.], (3)
Ip = 1 + 4 [s15251(2p — s1)(2p — s2) sin? (s, — s2) %) + cycl], (4)
I = 4 [Si(2p — s1)(2p — s2) sin? (s; — 83) 21;'] + cycl], (5)
with
Si = 1/(s1 — 82)*(s1 — 83)(s2 — s3), (6)
and where s,, sy, s3 are the single real roots of the characteristic equation
§3 — 2ps?2 — 25 + 2p = 0. (7
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Figure 2. Io versus v (left) for Q = 9.3 and f = -1 calculated
from Phariseau’s formula (8) (——-— ) and from Nagabhushana

Rao’s formula (4) (—) compared with experimental data of
Klein et al (xxxz.
I; versus v (right) calculated from Equation (9) (—-—-— )
and from (5) (-~ - —) compared with experimental results of
Klein et al (o o o) and I.; versus v from (3) for the same
values of Q and §.

506



100 7~ T T T T T T

100

80 80 [

60

40 o | \ /

INTENSITIES (/)
INTENSITIES (%)

20 20/ v A\ \\\[ ]
/ "

100

80

60

40

INTENSITIES (*)
INTENSITIES (/)

20

Figure 3. To( ), Ii(— — —) and I,(—~ — —) versus v at Brag
incidence (f = -1) respectively calculated from (4), (5), (3%
for Q = 10, 20, 30, 50.

Those results are in fact Nagabhushana Rao’s formulae [1] written in a more
explicit form, for f = -1. In the MNOA method [4] it is assumed that only
M negative and N positive orders are present in the diffraction spectrum,
with M < N for ¢ > 0. Considering M = 0, N = 1 and using the

eigenvalue method we obtain, for perfect Bragg diffraction ¢ = gor(”lt) B = -1),
Phariseau’s well-known results [2],
Ip = cos?(v/2) (8)
I; = sin?(v/2). (9)

NUMERICAL RESULTS

In Figure 2 the intensities I, (left) and I; and I.; (right) versus v
are shown. The various curves are calculated with formulae (8,9) and with (3),
(4), (5). Both sets of theoretical results are compared for Q = 9.3 with
experimental data obtained by Klein et al. [5]. The fitting of the 10A curves
with the experimental points is excellent. Unfortunately the data are restricted
to the domain v € [0,4]. In this region for v there is a rather good
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agreement with Phariseau’s results, but it fails beyond v % 5, due to the fact,
that from thereon I, is no longer negligible. Hence, we can conclude that for
Q = 9.3 there is only "pure" Bragg reflection up to v % 5.

In Figure 3 we represent the curves for Iy, I,; and 1., versus w, calculated
with the 10A method at Bragg incidence (Equations (3), (4), (5)), for
increasing values of the Klein—Cook parameter, namely Q = 10, 20, 30, 50.
The larger the value of @, the better the condition for "pure" Bragg reflection
is satished. This is because the intensities I.; decrease with higher values of
v. Incidentally, the deviation of the curves for I, and I; from Phariseau’s
theory becomes small with larger Q.

Finally, in Figure 4 we show I, I.,; and I.; versus v, computed from
Equations (3), (4) and (5) at Bragg incidence, but now for increasing values of

the regime parameter, 1.e. p = 1, 5, 10 and 20. Similar calculations were
performed for p = 30, 40 and 50, but the results were identical with those for
p = 20. Observe that for p = 1 most values of I, are too large, and

second order intensities are not negligible, so that this case does not illustrate
Bragg reflection very well. But for p > 5, the calculated values of I.; keep
decreasing, practically vanishing for = 20. Furthermore, Iy and I,; are nearly
represented by Phariseau’s formulae (08) and (9). This shows that approximately
for 5 < p < 20 there is near Bragg reflection, whereas for p > 20 we have
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Figure 4. Lo( , I(— — —) and I,(- - -) at Bragg incidence
(ﬂd: -1) calculated from (4), (5), (3) for p = 1, 5, 10
and 20.
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"pure" Bragg reflection. Hence, it is clear that both the parameters Q and p
are relevant for determining the condition for Bragg reflection.
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