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The NP order approximation (NOA) method is applied to the
diffraction of light by ultrasound. A truncated system of Raman-
Nath equations is treated by an eigenvalue method and by
Heaviside's operational method. Both methods lead to equivalent
expressions for the intensities of the diffracted orders, that
are easily implemented on computer. Theoretical curves obtained
by the NOA method are compared with previous approximations and
experimental data.

INTRODUCTION

Recently there was a revived interest in Raman-Nath equations, not only for their
relevance to acoustooptical problems1 and hologtaphy2’3, but also to the study of
stimulated Compton scatteringa, stimulated Cherenkov emission, and to the theory of
the free electron laser 5. The present paper is devoted to an approximate solution of
the Raman-Nath set of difference-differential equations for the amplitudes of the
diffracted light waves due to acoustooptic interaction in an isotropic medium. The
procedure used is the Nth order approximation (NOA) method, introduced by Nagendra
Nath6 for N=1 (thus restricted to the Bragg diffraction regime) and extended by
Mertens7 in 1962 for the problem of superposed ultrasonic waves, but practically
restricted to N=2, according to the computer facilities at that time. In two recent

8’9, Blomme and Leroy derived finite analytical expressions for the inten-

publications
sities using the 20A and 30A methods. In this paper, we extend their results to arbi-
trary order N. If one wishes to obtain a solution in the NOA, the amplitudes ¢0’¢tl’
will be determined by a truncated system of N+l Raman-Nath equations,

Oy 1y

neglecting the amplitudes ¢i(N+l)’¢t(N+2)’ etc.. To integrate truncated Raman-Nath

systems several methods have been proposed, e.g. an operator technique introduced by

Benlarbi and Solymar10 (extremely useful to treat higher-order Bragg diffraction)

and a Laplace-transform methodl. In this article, we will use two straightforward

methods :

(1) an eigenvalue method, leading to the solution of a characteristic equation of
degree N+1, with real roots;

(2) the operational method of Heaviside—Jeffreysll, leading to expressions for the

amplitudes in terms of determinants.
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The latter method has the advantage of using a finite acoustooptical interaction
length L, whereas in the formulation of the Laplace-transform methodl a physically
inadmissible infinite width L had to be introduced. Both our methods give equivalent
results that are equally easy to program. The actual compuﬁer facilities admit nume-
rical calculations for large values of N, so that nearly exact solutions may be
obtained not only in the Raman-Nath or Bragg diffraction regimes but also in the
intermediate region. A comparison of our NOA curves (for N=7) is made with the expe-
rimental results of Klein and Hiedemann12 (for the zeroth-order intensity) for diffe-
rent values of the Klein-Cook parameter13 Q and with the Raman-Nath parameter13’14 v
ranging from 0 to 10. The new theoretical curves fit the experimental points far more

better than curves resulting from previous approximate formulae14’15’16.

THE NOA METHOD

We restrict ourselves to the problem of the diffraction of a light beam by a progres-
sive ultrasonic wave in an isotropic medium. At normal light-sound interaction, the
amplitudes ¢n(C) of the diffracted light waves must satisfy the infinite set of

Raman-Nath equations

de¢
n - Gl G S
27 - (O, 704y) = inTee, (i=/-1) (1)
with boundary conditions
¢n(0) =38, , n=0,t1,42,... . (2)

In (1), ¢ = vz/L, where the so-called Raman-Nath parameter v = nelL/erA physically
represents the peak phase shift of the light, over the acoustooptic interaction
length L, due to the peak variation € of the relative permittivity € of the medium;
and p = Zerkz/elx*z, stands for a regime parameter, containing the ratio of wave-
lengths of light and ultrasound. The Klein-Cook parameter13 is defined by Q = pv, and
thus independent of the amplitude € of the disturbing %ound wave. In the NOA method

one neglects the energy in the diffraction orders higher than N, i.e. ¢+(N+1) =
15,17 ¥y

¢1(N+2) =...= 0. Hence, using the symmetry property ¢_n=(~l)n¢n, (1) can be
replaced by the following truncated system of N+1 equations :

d¢0

2}&? + 2¢1 =0,

d¢n 2

2—-&- - ¢n_1 + ¢n+1 = in p¢n (n=1,2,...,N-1) , (3)

d

2—;’5 - 0y.q = NP0y

with the boundary conditions (2), however, for n = 0,1,...,N.
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EIGENVALUE PROBLEM

Proposing a solution of (3) of the form

i

% »/fao exp(-%isc) . (4)

= 1 = .
¢ =a, exp(zlsc) , n=1,...,N;

n

the real constants agrap s sdy and the characteristic numbers s will be linked by

the matrix equation
M-sI)a=0 , (5)

where I is the (N+1)x(N+1) unit matrix, aT = (a0 a; .o aN) and

[0 WZ 0 s s s e . 0]
-iv2 0 i 0 . ... e o . 0
0 i 4p i 0 .. e o . 0
. 2 )
M = 0 . . . « ese 0 -1 np i 0 seo " . 0 (6)
0
0 . e 0 -i D% 4
. 2
| 0 . . . ee .0 -i N“p}

is a (N+1)x(N+1) Hermitian matrix. For a nonzero solution & the eigenvalues s will

be the real root518 of the characteristic equation

det (M -sXI)=0. (7)

The eigenvector a(k), a(k)T = (a(()k) aik)... argk)),

Sk (k=1,2,...,N+1) will be determined by

associated with the eigenvalue

® _ o

(™M - skI).a = (8)

Regarding the structure of the system (8), we may see that a(()k)#o and that a'(‘k) may

be chosen real (respectively purely imaginary) if n is even (respectively odd).
Furthermore, we can choose agk)=/5/2 (k=1,2,...,N+1) since the eigenvectors are only
determined up to an arbitrary factor. The general solution of the truncated linear

system (3), may then be written18 as
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6)

N+1

1.

% = E C exp(zlskC) , (9)
k=1
N+1

- (k) L - .

¢n = z 1 @n exp(21skC) , n=1,2,...,N; (10)

k=1
where the N+1 constants ¢, are real (as a consequence of taking agk) real). These

constants c, follow from
N+1 N+1
(k) _ & :
E N 1 , 2 cd, = 0 , n=1,2,...,N; (11)
k=1 k=1
obtained by applying the boundary conditions to (9) and (10).
Finally, one can calculate the intensities7, which in z=L may be expressed as
N+1
1) = b=l -4 ) o8 sinils,-s )L (12)
0 070 L ik j k4
jrk=1
i<k
N+1
- T = -4 Y N 2, W
Iin(V) = ¢tn(v)¢in(v) = -4 | ©iCkdn 8 sin (sj Sk)A’ n=1,...,N. (13)
jrk=1
i<k
Needless to say that the characteristic equation (7) of degree N+l in s, can only be
solved analytically for Ns3. In the latter cases explicit analytical expressions for
the intensities can be obtained6’7’8’9; otherwise the problem has to be treated nume-
rically in the following steps : (i) determine the eigenvalues and eigenvectors of
matrix M; (ii) next solve the linear system (11) for s (iii) finally substitute

these results in (12) and (13).

HEAVISIDE'S OPERATIONAL METHOD

Now, we will apply Heaviside's operational method11 to the truncated system (3).
After Jeffteys11 (p.237), we write p for d/d¢ and interpret p_1 as the operation of

definite integration

_ C
P lf(C,) = J f(z)dz . (14)
0

The resulting subsidiary equations
-s¢0 + 21¢1 = -s ,
2 " . _ = -
(pn -s)(bn - 1¢n-1 + 1¢n+1 =0 (n=1,2,...,N-1) , (15)
2 . _
(oN .S)¢N - ey, =0,

with s=-2ip, are to be solved as if p (or s) was a number. In compact notation (15)

can be rewritten as
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D¢ = -sE , (16)

where the almost Hermitian (N+1)x(N+l) matrix D is related to M by
D(s) = P(M-sT)P !, (17)

with P = IT+R, such that all elements r, of R vanish, except = /2-1. Further-
more, ¢oT = (¢0 ¢1 ¢2 ...¢N) and ET = (10 ... 0), the latter vector expresses the

boundary conditions. From (16), we obtain the formal solution of the problem :
_ -1
¢ =-sD E, (18)

where IDﬁl is the inverse of ID thus explicitly one has

8 Dl n+l
PR ] =i N
¢n det D ’ n=0,1,...,N ; (19)
where Dl,n 1 stands for the cofactor of element dl,n+1 of D (n=0,1,...,N).

Substituting s=-2ip in (17) and (19) we find

2p F

(p) —<p_
_ 1,n+l = N- = 2
¢ = ———ifSS—_-_ (n=0,1,...,N-1) R ¢N = F(p) * (20)

where F (p) is the following determinant :
1,n+l

2p-i(n+1)2p 1 0 ‘ . . 0
<1 2p-im2)% 1 0 ... : : 0
0 -1 . i . v . 0
0 0
s 2
0 . : . o 0 -1 2p-i(N-1)%p 1
0 . . .o -1 2p-iN%p
(21)
and F(p) = (-i)N+1 det D(p).
Next, we will apply Heaviside's expansion theorem11 (p.238), i.e.
N+1
AG) _ AQ) , Mo e )
B(p) " B(O) T [ B (a) (%L (22)
k=1

where A(p) is a polynomial in p of the same degree as B(p) or lower; ak(k=1,...,N+1)
are the simple zeros of B(p) and B' = dB/dp. Hence, (20) can be replaced by

N+1 N+1
F (o)
P W e s _ oy exe(el)
6, =2 Ll F (o) exp(e0) (n=0,1,...,N-1); ¢y=2 z Fo) (23)
. : k=1
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(16)

Regarding (17), the matrices I and M-sT are similarla. So, one can prove that

a, = %is being the real eigenvalues of M. Paying special attention to the case

1 8
k 27k k 7
(17) n=0, we obtain after some calculation
N+1 1 1,
- FyaGisPF 1 Gis) v
ther- I.(v) = ¢,(v)é,(v) =1 - 16 . 2 sin“(s.-s, )~ (j<k) ,
0 9™ F'(Gis, )F' Gis, ) ik
s the jrk=1 277] 277k (24)
which is equivalent to (12). Similar expressions for Ln (n=1,...,N) are readily

' obtained. To simplify the calculations of the determinants one can use the following

(18) ¢ recursion relations :
2
= -i3°0)F, . o= =0 ;
PP = (2poiiT0)Fy 5 (@) + Fy cp(®) 0 Fp oy =1 s By gy =0
' » ' ' .
- F'(p) = 2F) ,(p) +2pF) ,(p) +2F] ,(p) ; (25)
2
, - e ' ' -
‘ Fl'j(p) ZFl'j+1(p) + (2p-ij p)Fl’j+1(P) + Fl’j+2(p) (3=1,...,N)
| DISCUSSION
© In Fig. 1 (Q=1.26) and Fig. 2 (Q=1.48) we compare curves for I, obtained from Raman-
. Nath's geometrical theory'", Mertens' perturbation method!®.!¢ and the NOA method
(20) {(for N=7) with the experimental results of Klein and Hiedemann!?. After numerical
: calculation, ¢j=0 for jz7, hence, we have computed (12) and (24) for N=7. These theo-
- retical curves, which perfectly coincide, fit the experimental points even for v>4.5
. when Q=1.26 and for v>3.5 for Q=1.48, where the other approximate formulae clearly
; failed. For a profound discussion of the accuracy of the 20A and 30A methods, in a
wide range of the parameters p and v, we refer to papers of Blomme and Leroy®-°. Con-
) cerning computertime, using Heaviside's operational method is 257 faster than using
the eligenvalue method.
) .
) | ACKNOWLEDGEMENTS
é One of the authors (R.M.) wishes to thank the Belgian National Science Foundation for
. research grants.
0
REVERENCES
1
") !. Leroy 0. and Claeys J.M., Wave Motion, vol 6 (1984), pp. 33-39.
iN“p 2. Lewis J.W. and Solymar L., Proc. R. Soc. Lond., vol A 398 (1985), pp. 45-80.

. Hariharan P.,'Optical Holography', Cambridge University Press, Cambridge UK (1984).

4. Bosco P., Gallardo J. and Dattoli G., J. Phys. A : Math. Gen., vol 17 (1984),
pp. 2739-2742.

5. Dattoli G., Richetta M. and Pinto I., Il Nuovo Cimento, vol 4 D (1984),pp. 293-311.
%, Nagendra Nath N.S., Proc. Indian Acad. Sci., vol 8A (1938), pp. 499-503.
7. Mertens R., Proc. Indian Acad. Sci., vol 55A (1962), pp. 63-98.
£. Blomme E. and Leroy 0., J. Acoust. Soc. India, vol 11 (1983), pp. 1-6.
(22) 9 Blomme E. and Leroy 0., Acustica, vol 57 (1985), pp. 168-174.
{0, Benlarbi B. and Solymar L., Int. J. Electron., vol 48 (1980), pp. 361-368.
i1, Jeffreys H. and Jeffreys B.,'Methods of Mathematical Physics',3rd edition,

(21)

.,N+1) ; Cambridge University Press, Cambridge UK (1966), Chapter 7 and 8.
; t/. Flein W.R. and Hiedemann E.A., Physica, vol 29 (1963), pp. 981-986.
: {3, Klein W.R. and Cook B.D., IEEE Trans. Son. Ultrason., vol SU-14 (1967), pp.123-134.
g {4, Maman C.V. and Nagendra Nath N.S., Proc. Indian Acad. Sci., vol 2A (1935),
(23) § pp. 406-412.

{5 Mertens R., Med. Kon. V1. Acad. Wet. Belgié, n° 12 (1950), pp. 1-37.

{6, Kuliasko F., Mertens R. and Leroy O., Proc. Indian Acad.Sci., vol 68A (1968), pp.295-302.
!/ Mertens R. and Leroy O., Acustica, vol 28 (1973), pp. 182-185.

W Franklin J.N., "Matrix Theory', Prentice-Hall Corp., New Jersey (1968).

SR

427



100 T T T T T 1 T T
IO(°/.)
80 d4 | ------ RAMAN-NATH THEORY -
————— PERTURBATION THEORY
NOA METHOD
60+ 000 00 EXPERIMENTAL POINTS -
40 A
L s =
(s} -,
20 9 =~ 7
Ol’l' ‘\\ / AN
=, o/, AR ‘ N —
o) ,/ \ \ ./ -~ ‘\\
o/ \\ N g S
0 1 1IN ] S ¢ ! 1 |
0 1 2 3 4 5 6 7 8 9 10
v
Fig. 1 Zeroth-order intensity versus
Raman-Nath parameter for Q=1.26
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Fig. 2 Zeroth-order intensity versus
Raman-Nath parameter for Q=1.48
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