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The N-th order approximation (NOA) method is applied to the
diffraction of light by ultrasound, in cases of oblique inci-
dence of the light. A truncated system of Raman-Nath equations
is integrated numerically by means of an eigenvalue method. The
thus obtained theoretical curves for the light intensities, with
varying Raman-Nath parameter v and different Klein-Cook para-
meters Q, are compared with previous approximations and experi-
mental data. The theoretical predicted symmetries of the
diffraction spectra with respect to the various Bragg angles

are verified.

INTRODUCTION

Recently the intensities of the diffracted lightwaves in acoustooptical problems
were successfully determined by analytical-numerical solution of the Raman-Nath (RN)
equations in the simplified case of normal incidence of light1’2’3’4. For that, the
authors used a N-th order approximation (NOA) method, introduced by Nagendra Nath5
for N=1 and extended by Mertensa. In the present paper we treat the approximate
solution of a similar RN system, however comprising all cases of oblique light inci-
dence. A solution in the NOA may be obtained from a truncated RN system of 2N+1
equations, relating the amplitudes °0’¢11""’¢2N’ thus ignoring the amplitudes
¢1(N+1)’¢1(N+2)"" The solution of this finite system is then reduced in a classi-
cal way to an eigenvalue problem, distinctly suited for numerical treatment. The
case N=1 is already long due to Nagabhushana Rao7; actual computer facilities how-
ever admit calculations for large values of N, yielding nearly exact solutions not
only in the RN and Bragg regimes but also in the intermediate region. In the latter
two cases the diffraction spectrum is asymmetric with respect to the zeroth order
line. This asymmetry with regard to the intensities clearly results in an unequal
number of positive and negative lines, determined by the computer routine itself.

A comparison is made with the experiments of Mayer8 and Klein et al 9. The light
intensities of zeroth and first order are shown versus the angle of incidence for
different values of the Klein-Cook patameterlo Q and with the RN parameterll v=2 or

v=3. The fitting of the theoretical curves with the experimental points is excellent.
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THE NOA METHOD FOR OBLIQUE INCIDENCE

Restricting ourselves to the problem of a light beam diffracted by a progressive
ultrasonic wave in an isotropic medium, where the direction of propagation of the

light beam makes an angle ¢ with the ultrasonic wave fronts, the amplitudes ¢ (7)
g n

of the diffracted light waves satisfy the infinite set of RN equationslz’13

d¢n

. - Y = A gl

ch (6170041 wmn‘rﬁ)d}n . (1)
with boundary conditions

¢n(0) = Gno , no= 0,21,22,... (2)

In (1), ¢ = vslz/JE;KUcosw, p = 2A§/€1A*2, g = -(ZJEZA*/AO)sin¢, where e, is the
peak variation of the relative permittivity € of the medium, AO the wave length of
light in vacuum, A* the wave length of ultrasound. If B = -p, with p integer, then
p(AO/Z/E;X*) = sin@ép), where wgg) is called the Bragg angle of order p. The z-axis
being parallel with the sound wave fronts; z=0 and z=L correspond with the bounda-
ries of the ultrasonic field. In what follows we shall make use of the RN parameter
v = {L/z and the Klein-Cock parameter Q= pv, the latter being independent of €-
Since in practice ¢ is always very small we set cosy = 1. In the NOA method one
neglects the energy in the diffraction orders higher than N, i.e. ¢1(N+1)=¢t(N+2)=
...=0. Hence (1) is replaced by the truncated system of 2N+1 equations

2d¢ _/dg - %-1“"%,—1\1) +0,,,(1-6 ) = ipn(n+g)e (3)
with ¢n(0) =8 g0 1= 0,810,422, .. 4N,
Projecting a solution
= L = 0,41
¢, = An exp(zlsC) . n=0,tl,...,#N , (4)

the integration of system {3) is then reduced to an eigenvalue problem with

matrix equation
(M-sI).A = O, (5)

The Hermitian (2N+1) by (2H+1) matrix ™M has diagonal elements ij =
p(N-j+1)(N-j+1-8), (3=1,2,...,2N+1), subdiagonal elements Mp p_1=di (p=2,3,..,2N+1),
9

superdiagonal elements M =i (gq=1,2,...,2N}, the remaining elements all being

q,qtl
zeroy; L is the 2ZN+1 by 2N+1 unit matrix and IXT=(A_N,,..,A_l,AO,Al,...,AN).

For a nonzero vector solution A the eigenvalues s must be the 2N+l obviously
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real roots of the characteristic equation
det(M-sXT) =0 . (7)

Next, the eigenvector 1§(k), zk(k)T=(&E§),..‘,&ET),&ék),Aik),.,.,Aék)) associated

with the eigenvalue Sy (k=1,2,...,2N+1) can be determined from the linear homoge-

neous system (5). The general solution of the linear system (3) may then be written

as
2N+1
= (k) 1, o
¢n = E CkAn exp(zxskC) s n=0,+l,...,#N . (8)
k=1
Regarding the boundary conditions (2), the 2N+l real constants Ck follow from
2N+1
(k) _ g
E CkAn = SnO , n=0,+1,...,N . 9)
k=1
Finally, one can calculate the intensities, at 2z=L, yielding
2N+1
- 2 _ - (k),(2)_. 2. v
I.(v) = |¢n(v)| ‘_anO 4 z CC A A T sin (s, -8 )7 s
k,2=1
k<2
n=0,+1,...,N . (10)

The characteristic equation (7) of degree 2N+1 in s, can be solved analytically
only for N=1; explicit expressions were obtained by Nagabhushana Rao7; otherwise
the problem has to be treated numerically in the following steps : (i) determine
the eigenvalues and eigenvectors of matrix M;j; (ii) solve the linear system (9)

for C, ; (iii) substitute these results into (10).

k;
NUMERICAL RESULTS AND DISCUSSION

(i) In Fig. 1 we compare Iy and I, ve;sus ¢ obtained from the NOA method (for N=7)
with the experimental results of Mayer for Q=4.28. The fitting of both curves is
very good. A similar result is obtained for Q=8.36. The purpose of Mayer's experi-
ments was to show the deviation from RN's elementary theorylA, confirmed here ‘theo-
retically. Similar results were also obtained by Leroy and Blomme15 by a so-called
MN-0A methodlé.

(ii) Further we compare I versus B, calculated with the NOA method (N=7,

0 and I_l
although N=5 suffices for all values considered) with the experimental points ob-
tained by Klein et alg'for different combinations of Q's (0.57,2.25,3.75,6.28 and
9.3) and v's (2 and 3). In Figs. 2,3,4,5 we represent our numerical and Klein's
experimental results respectively for Q=0.57 and v=2, Q=2.25 and v=3, Q=6.28 and
v=2, Q=9.3 and v=3. There is excellent agreement with the measured values. Our

curves fit the data even better than those calculated by Klein et al using a
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direct numerical integration of the RN equations. Furthermore the numerical integra-
tion used here results in accurate plots for even larger values of IBI. From the

figures the following theoretical properties™ are confirmed :

- Intensities I_1 show an extremum at the first order Bragg angle wé&l) (g=1);
- Intensity 'distributions of I_1 are symmetric about wéil). From our computer data

it is clear that for Q» 1 (we took Q=9.3), Bragg reflection of the light is a domi-

nant effect, although, for certain values of B the intensities of orders +2 or -2
are not megligible.

(iii) In addition to comparison with experiments we have calculated the intensities
IO’ Itl’ Iiz versus v, for Q=2.25 with B=1 and =2 (Figs. 6 and 7), showing clearly
the asymmetry of the spectrum. Up to v=10, N=5 largely suffices and even N=4 would

have given excellent results.

(iv) Finally, we have computed IO’ Itl versus B for Q€ 1, namely Q=0.1, with v=1,
=2 and v=3 using the NOA method (N=6). Compared with the formulae from the elemen-
tary RN theory13 (expressed here in Q and B) :

I+n = I_n = Jﬁ(v¢) (n=0,1) , Vo = vsecysin(QR/4)/(QR/4) , (11)

these practically yield the same results (Fig. 8). In this case the symmetry of the

diffraction pattern is also displayed.
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Fig. 6 lg, Iy, I_q versus v for Q=2.25, B =2
from NOA method.
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