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THE RAMAN-NATH BQUATIONS REVISITED. II. OBLIQUE INCIDENCE OF THE LIGHT -
BRAGG REFLECTION

R.A. Hertanl., . Hermn‘, J.-P, Ottoy‘

® Inst. Theor. Mechanica, Rijksuniversiteit Gent, Gent, Belgium
* Math. Dept. and MRC, Univ. Wisconsin, Hadison, WI 53706, USA
* Seain. Toeg. Wiskunde & Blometrie, Rijksuniversiteit Gent, Gent, Belgium

The N-th order approximation (NOA) method is applied to the
diffraction of light by ultrasound, in cases of oblique inci-
dence of the light. A truncated system of Raman-Nath equations
is integrated numerically by means of an eigenvalue method. The
thus obtained theoretical curves for the light intensities, with
varying Raman-Nath parameter v and different Klein-Cook para-
meters Q, are compared with previous approximations and experi-
wental data. The theoretical predicted symmetries of the
diffraction spectra with respect to the various Bragg angles
are verified.

INTRODUCTION

Recently the intensities of the diffracted lightwaves in acoustooptical problems
were successfully determined by analytical-numerical solution of the Raman-Nath (RN)
equations in the simplified case of rormal incidence of lightx’2'3'b. For that, the
authors used a N-th order approximati:n (NOA) method, introduced by Nagendra Nlths
for N=1 and extended by Mertens . In the present paper we treat the approximate
solution of a similar RN system, however comprising all cases of oblique light inci-
dence. A solution in the NOA may be cbtained from a truncated RN system of 2N+1
equatjons, relating the amplitudes 00.0“....,0!". thus ignoring the amplitudes
‘t(N+l)"x(N+2)"" The solution of this finite system is then reduced in a classi-
cal way to an eigenvalue problem, distinctly suited for numerical treatment. The
case N=1 is already long due to Nagabhushana Rao’; actual computer facilities how-
ever admit calculations for large values of N, yielding nearly exact solutions not
only in the RN and Bragg regimes but also in the intermediate region. In the latter
two cases the diffraction spectrum is asymnetric’vith respect to the zeroth order
line. This asymmetry with regard to the intensities clearly results in an unequal
number of positive and negative lines, determined by the computer routine itself.

A comparison is made with the experir:nts of I‘(ayel’s and Klein et al 9. The light
intensities of reroth and first order are shown versus the angle of incidence for
different values of the Klein-Cook pnruneterw Q and with the RN parnmeter“ v=2 or
v=3. The fitting of the theoretical curves with the experimental points is excellent.

THE NOA METHOD FOR OBLIQUE INCIDENCE

Restricting ourselves to the problem of a light beam diffracted by a progressive
ultrasonic wave in an isotropic medium, where the direction of propagation of the
light beam makes an angle ¢ with the ultrasonic wave fronts, the amplitudes ¢ _(()
of the diffracted light waves satisfy the infinite set of RN eqlutiunsn'n "

n N .
s (e, LY ipn(n+g)e

with boundary conditions
- - (2)
Qn((!) 6n0 % n 0,41,42,

In (1), ¢ = w:lz//c—;kocow, p= ng/:lx*z. B = —(ZJE:A‘IAO)MM, where L is the
peak variaticn of the relative permittivity € of the medium, xo the wave length of
light in vacuum, A* the wave length of ultrasound. If B = -p, with p integer, then
p(AO/I\/:A‘) - Il"ﬁgg). where vg:) is called the Bragg angle of order p. The z-axis
being parallel with the sound wave fronts; z=0 and z=L correspond with the bounda-
ries of the ultrasonic field. In what follows we shall make use of the RN parameter
v = {L/z and the Klein-Cook parameter Q= pv, the latter being independent of €
Since in practice ¢ is always very small we set cosy ¥ 1. In the NOA method one
neglects the energy in the diffraction orders higher than N, i.e. .!(Nﬂ.)-‘z(N#Z)-
+..=0. Hence (1) is replaced by the truncated system of 2N+l equations

3 i B 5
2d¢ /dg -6 (1 Sn) ¥ 41176 y) = ton(ntple (3)
with on(o) =8 g0 m = 0,481,482, .00 1N
Projecting a solution
4 = A exp(%iSC) ' no=0,tl,...,1N, . (4)

the integration of system (3) is then reduced to an eigenvalue problem with

matrix equation
(M-sI).A =0, (s)

The Hermitian (2N+1) by (2N+1) matrix M has diagonal elements H“ -
p(N-j+1)(N-j+1-8), (j=1,2,...,2N+1), subdiagonal elements "P-P'l-‘i (p=2,3,..,28+1),
superdiagonal elements M , =t (q-l.l,....ZN).Tthe remaining elements all being
zero; X {is the 2N+l by 2N+l unit matrix and A -(A~N"'"A-I'AU'AX""'A‘N)'

For a nonzeru vector solution A the eigenvalues s must be the 2N+l obviously

real roots of the characteristic equation
det(M-sT) = 0 . (¢))
k
Next, the eigenvector A(k). A(UT-(LS:).. . ‘,&Eﬁ),kék),kik), s 'Afl )) associated

with the eigenvalue Sy (k=1,2,...,2N+1) can be determined from the linear homoge -

neous system (5). The general solution of the linear system (3) may then be written

as
2N+1
(k) S i 8
‘" - 2 ckAn EKP(ZiSkC) s n=0,%1,...,8N , (8)
k=1
Regarding the boundary conditions (2), the 2N+l real constants Ck follow from
2N+1
(k) _ -
E Ckkn 6n0 y» n=0,8l,...,¢N ., 9)
k=1

Finally, one can calculate the intensities, at z=L, yielding
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In(v) - |on(v)| - 6“0 - EI ckcLAn An sin (ll-ll)z i
K, t=1
k<t
n=0,11,...,4N . (10)

The characteristic equation (7) of degree 2N+l in s, can be solved analytically
only for N=]; explicit expressions were obtained by Nagabhushana RAc7[ othervise
the problem has to be treated numericaily in the following steps : (i) determine
the eigenvalues and eigenvectors of matrix M; (ii) solve the linear system (9)

for Ck; (1i1) substitute these results into (10).
NUMERICAL RESULTS AND DISCUSSION

(1) In Fig. 1 ve compare I, and I_, versus y obtained from the NOA method (for N=7)
wvith the experimental results of Mayel'8 for Q=4.28. The fitting of both curves is
very good. A similar result is obtained for Q=8.36. The purpose of Mayer's experi-

ments vas to show the deviation from RN's elementary them—yl , confirmed here theo-
retically. Similar results were also obtained by Leroy and Blonm‘s

MN-0A method16 .

by a so-called
(14) Purther wve compare I and I_ versus f, calculated with the NOA method (N=7,
although N=5 suffices for all values considered) with the experimental points ob-
tained by Klein et 119 for different coabinations of Q's (0.57,2.25,3.75,6.28 and
9.3) and v's (2 and 3). In Figs. 2,3,4,5% we represent our numerical and Klein's
experimental results respectively for Q=0.57 and v=2, Q=2,25 and v=3, Q=6.28 and
v=2, Q@=9.3 and v=3. There is excellent agreement with the measured values. Our
curves fit the data even better than thise calculated by Klein et al using a

direct numerical integration of the RN cquations. Furthermore the numerical integra-
tion used here results in accurate plots for even larger values of lﬁ( From the
figures the following theoretical p(opertiesl7 are confirmed :

- Intensities Ivl

show an extremum at the first order Bragg angle ng” (B=1);

- Intensity distributions of l-l are symmetric about w;);”. From our computer data
it is clear that for Q» I (we took Q=9.3), Bragg reflection of the light is a domi-

nant effect, although, for certain values of B the intensities of orders +2 or -2
are not megligible.

(ii1) In addition to comparison with experiments we have calculated the intensities
Iy I“. 1,, versus v, for Q=2.25 vith g~1 and =2 (Figs. 6 and 7), showing clearly
the asymmetry of the spectrum. Up to v=10, N=5 largely suffices and even N=4 would
have given excellent results.

(iv) Finally, we have computed tO’ Itl versus 8 for Q€ 1, namely Q=0.1, with v=1,

v=2 and v=3 using the NOA method (N=6). Compared with the formulae from the elemen-
tary RN theory13 (expressed here in Q and B) :
2
Lin = L, = 9.(v,) (n=0,1) , v, = vsecysin(QB/4)/(Q8/4) , (1)

these practically yield the same results (Fig. 8). In this case the symmetry of the
diffraction pattern is also displayed.
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