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ON THE DIFFRACTION OF LIGHT BY ADJACENT PARALLEL ULTRASONIC WAVES.
A GENERAL THEORY

R. Mertens and W. Hereman

Inst. Theor. Mechanica, Rijksuniversiteit Gent, B-9000 Gent, Belgium

A beam of light normal to the direction of two adjacent parallel
ultrasonic waves is diffracted by the medium containing the first
ultrasonic wave. According to physical conditions, known exact or
approximate theories can be used. Each of the diffracted light
waves then interacts with the second ultrasonic wave. For this
second diffraction also exact or approximate theories can be
applied. The present method not only leads to a simplification of
the calculations, but, since only one system of reference is used,
it also yields exact boundary conditions. In the case where the
second ultrasonic is an harmonic of the first one, several waves
diffracted by the second medium may combine. Some special cases
are discussed.

INTRODUCTION

Since the experiments on diffraction of light by two parallel adjacent ultrasonic wa-
ves by Pande et al1 this phenomenon has been studied extensively, experimentally as
well as theoretically. For a survey of the literature since 1960 we refer to the pa-
per of Leroy et a1, Theoretically two methods were developed. A first one considers
the diffraction of the incident light beam (normal to the direction of sound propa-
gation) by the first ultrasonic wave, followed by the diffraction of each diffracted
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light wave by the second ultrasonic field. This was worked out by Mertens” in the ca-

se of the elementary Raman-Nath theory and by Leroy and Mertens’ using the N-th or-
der approximation (NOA) method for N=1. A disadvantage of the previous method was
that for each wave diffracted by the first medium a different system of reference
had to be introduced for the description of the diffraction in the second medium.

A second method introduced by Leroy5 is based on a global descrivntion of the two ul-
trasonic fields, leading, however, to the integration of rather involved systems of
differential equations and moreover masking the physics of the problem, e.g. the
oblique incidence in the second medium and eventual Bragg reflections in the case
where the second ultrasonic is an harmonic of the first one.

In the present paper we shall generalize the first method, using a modified version
of the generalized Raman-Nath theory6 in order to study the interaction of the light
with the second ultrasonic field. Hereby only one coordinate system is used instead

7. This general method has been worked out

of two in the original Raman-Nath theory
in the following cases :
- two adjacent ultrasonic waves having incommensurable frequencies;

- two adjacent ultrasonic waves, the second one being the second harmonic of the
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first one.

Two approximate methods have been considered :

- the diffraction of light by two adjacent ultrasonic waves, one being the N-th har-
monic of the other, in the case where the elementary theory of Raman-Nath is valid;

- the diffraction of light by two adjacent ultrasonic waves, one being the second har-
monic of the other, in the case where the NOA-method for only one diffraction order

(Bragg case) may be used.

GENERAL THEORY OF THE DIFFRACTION OF LIGHT BY ADJACENT PARALLEL ULTRASONIC WAVES
WITH INCOMMENSURABLE FREQUENCIES

We consider an incident beam of light, with frequency v and wavelength XA in the medi-
um, normal to the direction of propagation of two adjacent parallel ultrasonic waves,
with respective frequencies vﬁ and vE, wavelengths Aﬁ and AE and widths L, and L2
(Fig. 1). We put the x-axis along the direction of propagation of the sound waves,
the z-axis along the direction of propagation of the incident light. In z==L1 the
electric field of the light will be split up in several plane subwaves6 making angles
o = -nx/A? (n€Z) with the z-axis, having frequency shifts Avn = —nv? (n€Z) and

n
with amplitudes ¢n(v1), where

v, = ne1L]/erk = ;1L1/z . @)
€ being the relative permittivity of the undisturbed medium and €1 its maximum vari-
ation. The amplitudes ¢n(c1) are obtained as follcws6 : find the solution W(1)(£1,c1)

of the partial differential equation

M

24(1
Y . 1 1. Y
2 0Ty Zicos2g, y(D o - 7ie, ——ggz—— 0<zy<vy), (2a)
1
with the boundary condition W(1)(£1,0) =1, (2b)
and the periodicity condition W(1)(g1+ﬂ,c1) = W(j)(£1,c1) 5 (20)
_ 2 x2
where Py = 2627 /eX)7, 3
_ 1 * 3m =
and g, = z(Kx-uit+5D) gy =mez/e . €3]

Developing W(1)(£1,g1) in a Fourier series
v ,op - T aplepi® expl2ingy) s)

gives the amplitudes. This method is called the "modified generating function method'.
The equation (2a) with the conditions (2b,c) may be solved exactly (arbitrary values
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of p1) or approximately for P =0 (elementary Raman-Nath theory), P < 1, and P4 > 1
(Bragg case).

Let us now consider the interaction of the n-th partial light wave with the second
ultrasonic wave in tie same frame of reference Oxz. In earlier theories4 an infinite
set of reference systems, the new z-axis making angles 9 with the original z-axis,
had to be introduced. In z = L14-LZ the electric field of the partial wave will con-
sist of new subwaves, making angles 6 , = wﬂ;—n'x/xz = —A(n/A?+n'/A}) with the z-

axis, having frequency shifts Av v = —(nv§+n'v§) and with amplitudes
bt = O (V)0 (V50 Jexp(-in's) (6)
where v, = wesz/erAcoswn = CZLZ/Z ~ ﬂeZLz/erk , (7)

§ being the phase difference of the two ultrasonic waves. The function ¢n,(cz;wn),
where v1ez/e1 < [ < V,, may be obtained in the following way6 : solve the PDE for

(2) 2,(2) (2)
2 A (2) __1. 3% _ . Y
2 %, Zicos2g, V¥ 7ie, : asing —— , (8a)
£ 2
with boundary condition W(Z)(Ez,v1ez/e1;wn) =1, (8b)
and periodicity condition v@ @ em, 50 ) = v (€050 ) (8¢)
Y 27 "2 522%n 2022% ! 2
where =2 Az/e a2 a, = 2e_Me X% (9a,b)
P2 182" ) &2 > >
g, = %(k*gx—m*zt +%“-— 8) , g, = me,z/e Xcosp =~ me,z/e X . (10)

€ being the maximum variation of relative permittivity in the second ultrasonic
field. We remark here that for convenience the boundary condition (8b) has been nor-
malized. Developing W(z)(éz,cz;wn) in a Fourier series,

2 T -n' .

v B (e ) = L (e em2in's) (1
leads to the unknown factor ¢n.(vz;¢n) in (6). Returning to the original variables x
and t in (11) leads via (10) to the exponential factor exp(-in'é). Eq. (8a) with the
conditions (8b,c) may also be solved, either exactly or approximately, according to
the physical parameters of the second US field.
Finally, the intensities of order (n,n') are given by
Epi = ¢n(v1)$;(v1)¢n,(Vz;wn)$;7(v2;wn), where the bar signifies complex conjuga-
tion.

284



ADJACENT PARALLEL ULTRASONIC WAVES, ONE BEING AN HARMONIC OF THE OTHER

Let the second USW be the N-th harmonic of the first one, i.e. \)‘f2 = N\)*1 and
A = A’%/N. The angle of incidence of the n-th subwave in z =Ly is then given by

e = A = -(20/N) (M/2)5) - (12)
If p = -2n/N, with p EZO, i.e. 2n is a multiple of N, then ‘n is the Bragg angle of
order p denoted by «pé?. So, in general, not all subwaves emerging from the first
sound field give rise to Bragg incidence, unless N=2. In the latter case, where the
second USW is the second harmonic of the first one, all angles of incidence for the
second US field are Bragg angles, leading to more simple expressions for the ampli-
tudes of the diffracted light waves. So, e.g. in the exact solution, the amplitudes
are expressed with the Fourier coefficients of the periodic Mathieu functions of
integral order®.

Investigating those subwaves coming out from the plane z = L1 +L2 in a particular
direction defined by the angle 8on = —Zn()\/x’%) and with the same frequency (cf. Fig.

2), we obtain respectively for the amplitudes of even and odd order

¢2n = _z cbzr(v-])d)n_r(vz;‘pzr)exp[ —i(n—r) (S] , (]33)
bonet1 = ) by rr1 (V1)¢n—r (Vz;er)exp[ -i(n-r)$8] . (13b)
T=-
SPECIAL CASES

(a) Fundamental and N-th harmonic. Py =0, p0,~0

In both US fields the physical conditions for the application of Raman-Nath's elemen-
tary theory are fulfilled” leading to the amplitude of order s,

- .
© 2sin(za,v,sing )
¢s = Z Js—nN(V1)Jn[ 222 o 1

n=-w azsin«ps_nN

x exﬂ-%inazvzsinws_m\l] exp(-ing) . (14

~

This expression corresponds with the formulae obtained by Mertenss. If the condition
azvzlsimps_an < 1 is fulfilled (14) reduces to Leroy's Eq. (10) of Ref. 5.

(b) Fundamental and second harmonic. Bragg case

LE pq > 1 and €4 and €, are of the same order of greatness, we have also Py > 1. In

this case and for normal incidence, in the first US field, we use the formulae ob-
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tained by Nagendra Nath10 :

1 °1 ot g o1 G
¢0(v1)==7(1— —)exp(i V1)*w7(1+ )exp(l————————v1) (15a)
/o8 4 oI* 4
i _ByFvpyEs BvP s
¢+1(Vi) =7 [exp(L—ﬂ——————v1)-exp(r————————v1)] (15b)
- /Efig 4 4

Since the zero order line coming out from the first US field has normal incidence

with respect to the second one (15a) and (15b) apply, changing vy into Vs and P

into Py-

For1?ragg angle incidence in the second US field we shall apply Phariseau's formu-
lae -

(1 V2 (1) V2
- for a Bragg angle of order +1 : ¢0(V2;¢BR ) = cos—, ¢1(v2;¢BR ) = sin7?~, (16a,b)

(_1)) -

Yo (-1) V2
- for a Bragg angle of order -1 : ¢0(V2;¢BR = cos—, ¢_1(V2' g ) =

' = —sinﬁf. (17a,b)

Considering the combinations of subwaves as given in Fig. 2, the following intensi-

ties are obtained up to terms in 1/0% and 1/p§ :

Iy q~1,1~0 (18a,b)
I, = og (v )0 (v,30) |2 = [0 (v) 6 (v, 50) |2=T) | ~—rsin® pz+8v (18¢c,d)
0,-1- 1%lvlo_1(vys o) o lvys 0,17 5%%8 7V ,

Loy = 100, (v b (Vyiv e VYo, (vy) by (v i0e D)e 1012

= I¢1(V1)(T tsinvzcosé) (18e,f)
) 4 _.z7B8
with I+1(V1) = 1_1(v1) = E%:§-51n . vy (18g)
2 g . 2veyts g . 2 "B
Ly = |¢0(V1)¢O(V';0)| ~ 1 _QT+851n p vy - p§+851n p v,. (18h)

Formula (18e,f) has been obtained by the global method of Leroy5 and has been veri-
fied experimentally by Sliwinski and collaboratorsz’12, and employed for measuring

the ultrasonic pressure of the second harmonic.
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Fig. 1 Geometry in the case of two parallel adjacent US beams, with incommensurable

frequencies
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Fig. 2 Geometry of the special case v, = Zv?
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