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ABSTRACT

This thesis discusses and illustrates the mathematical solution of a positioning problem that
was developed for Thunder Basin Coal Company (TBCC) in Wright, Wyoming. TBCC is
designing and implementing a system to electronically determine the three dimensional position
of equipment in an open pit mine on a real time basis. This system will use radio beacons
to measure the approximate distances between the equipment in the mine, and known fixed
positions on the rim of the mine. The mathematical solution methods presented in this thesis
use these approximate distances, and the coordinates of the known fixed beacon positions, to
calculate the position of the equipment. The surveying term used to describe this class of
problems is trilateration.

TBCC is developing this system because alternative methods of determining positions in a
timely, accurate, and cost effective manner are not currently available. Traditional manual
surveying techniques are too labor intensive and too slow. The Global Positioning System
[Remondi 1991] currently does not provide elevations that are accurate enough for TBCC’s
applications.

The first solution proposed in this thesis is to treat the unknown position as the point of
intersection of the surfaces of several spheres, whose centers are known fixed positions. This
approach is not feasible for TBCC’s problem because it leads to a nonlinear equation of a
high degree. Alternatively, by linearizing the equations and converting the problem into one
of finding the intersection of several planes, more useful solution techniques can be established
and are developed in this thesis.

The nonlinear least squares technique provides the most accurate results of all methods pro-
posed in this thesis. It calculates the exact position when exact distances are used; and a
reasonably accurate position when used with approximate distances. The accuracy of the cal-
culated position is degraded when the elevation of the unknown position is above the elevation
of the lowest beacon position, and when the unknown position is located outside the perimeter
of the beacon positions.

TBCC is procuring the distance measuring radio beacons that will be installed on the rim
of the mine. They are also procuring touch screen computer terminals to mount in various
pieces of equipment. These terminals will provide two way communication with the computer
that calculates their position through the use of radio modems. TBCC will use this electronic
surveying system for a variety of mining applications, including positioning of bulldozers, drills,
etc.
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1. INTRODUCTION

1.1 Purpose

Thunder Basin Coal Company (TBCC) is developing a system to electronically determine the
position of equipment in an open pit mine on a real time basis. Their proposed system will
use radio beacons to measure the approximate distances between the equipment in the mine,
and known fixed positions on the rim of the mine Figure 1.1. The electronics firm, contracted
by TBCC to develop and produce the radio beacons, argued that a mathematical solution
to this three dimensional positioning problem does not exist. The electronics firm proposed
that TBCC contract with them to develop and produce an oscillating, rotating laser which
could be used in conjunction with the distance measuring radio beacons to determine the
elevation of the equipment in the mine. TBCC contacted the Department of Mathematical
and Computer Sciences at the Colorado School of Mines in December 1990, to determine if a
mathematical solution to this three dimensional positioning problem exists; and if so, whether
or not a programmable fast algorithm could be designed. This thesis is a presentation of the
mathematical solution of this positioning problem.

1.2 Methodology

Conventional surveying methods, commonly referred to as triangulation, use measured angles
to calculate the coordinates of an unknown position. Since the angles in this positioning
problem are not known, an alternate solution technique known as trilateration must be used.
Trilateration is the term used to describe the class of positioning problems which involve the
use of measured distances from known positions to an unknown point. Since the distances used
in this application are not exact, the solution techniques presented in this thesis use an iterative
trilateration procedure to calculate the best approximation to the exact solution.
Trilateration gained more importance in surveying due to the development of electronic equip-
ment that can measure distances accurately [DeLoach 1963]. These electronic measurements
can be made with radar, lasers, radio signals, etc.

Numerous issues had to be resolved in order to determine if a practical mathematical solution to
this trilateration problem exists. For instance, proposed solution techniques are unacceptable if
they fail to calculate the exact position when used with exact distances. TBCC required that a
position be accurate within a tolerance of five feet when used with approximate distances that
are accurate within one-half foot. The evaluation of these solution techniques must be com-
pleted with actual data provided by TBCC. The effects of errors in the distance measurements
on the accuracy of the calculated position had to be investigated to determine if the beacon
manufacturer’s proposed accuracy of one-half foot was acceptable. The theoretical minimum
number of beacons that are needed to calculate a unique solution, and the number of these
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beacons that are needed in practice had to be determined. A calibration program had to be
developed to study the effects of various beacon placement patterns on the accuracy of the
calculated position.

The algorithms presented in this thesis were first written in the MACSYMA

[Symbolics 1988] symbolic manipulation computer program, and then rewritten in the C pro-
gramming language. Comparison of the results from the two independent programs helped
determine programming and roundoff errors. The C programming language was selected be-
cause it is fast and accurate, widely available, and was requested by TBCC.

1.2.1 Mathematical Notation and Data Collection

The mathematical notation and symbols used in this thesis are given in Figure 1.2. Descriptions
of these symbols, and the corresponding data collection techniques are as follows.

Surveyors use conventional surveying techniques to determine the easting, northing, and ele-
vation of each beacon. These coordinates, which are labeled z;, y;, and z; for the ith beacon,
are manually typed into a computer data file. TBCC arbitrarily selected a point in western
Wyoming as the origin of their coordinate system. The following coordinates, which were
supplied by TBCC, were used to test the various solution methods presented in this thesis.

By (1,11, 21) = B1(475060, 1096300, 4670)
Bao(2, ya, 22) = Bs(481500, 1094900, 4694)
Bs(x3, y3, 23) = B3(482230, 1088430, 4831)

Bi(x4, s, 24) = B4(478050, 1087810, 4775)
Bs(xs, ys, 25) = Bs(471430, 1088580, 4752) (1.1)
Be(xs, ys, 26) = Bs(468720, 1091240, 4803)
By(x7,yr, 21) = B:(467400, 1093980, 4705)

Bs(zs, ys, 25) = Bs(468730, 1097340, 4747)

The coordinates of the mobile receiver/transmitter which is mounted on the equipment in the
mine are denoted z, y, and z. Determining these unknown coordinates is the topic of this
thesis.

Each beacon uses signal timing data to measure the approximate distance between itself and the
mobile receiver/transmitter that is mounted on the equipment in the mine. The approximate
distance between the ith beacon and the equipment in the mine is denoted r;. The beacons
electronically input these distances into a computer data base. When the exact distances are
used in the development of the solution techniques, they are labeled 7; instead of 7;.

The distance data used to test various solution techniques presented in this thesis was obtained
in the following manner. First, the coordinates of the equipment in the mine are arbitrarily
selected. The exact radii, 7;, are then calculated by using the coordinates of the beacons (1.1),
the coordinates of the equipment in the mine, and the following formula

i = \/(I_xi)2+(y—yi)2+(z_zi)2 (i: 172a""n)7 (1'2)

where 7 denotes the beacon number, and n is the total number of beacons. The r; are obtained
by adding errors to each of these 7;. The errors which are used in this thesis for testing purposes
are shown in Table 1.1.
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Tab. 1.1: Errors Induced on the Distances

Distance Error
r1 -0.457890
T2 0.173050
r3 0.316931
T4 -0.191205
Ts 0.468339
Te 0.141141
Ty 0.328659
T8 -0.390460

These distances are then used to solve the positioning problem for the coordinates (z,y, z) of
the equipment in the mine. The accuracy of the various solution methods presented in this
thesis is evaluated by comparing the coordinates which were used to calculate the 7;, with the
coordinates calculated with the proposed methods.

The reader should realize that r; does not refer to the distance between the beacon B; and the
arbitrarily p051t10ned orlgm O of the reference system (z,y, z). Referring to Sections 2.2.1 and

2.2.2,1:# || R: || = || OB; ||; however ; = || PB; ||.

1.2.2  Solution Techniques

The obvious approach in solving this positioning problem is to treat the coordinates of the
equipment in the mine (z,y,2) as the point of intersection of several spheres, whose centers
are the locations of the n beacons (z;,y;, 2;) for i = 1,2,...,n. The exact distances between
the beacons, and the equipment in the mine, r;, are the radii of the individual spheres. The
equation for any of these spheres is

(x—2:)2+ (y—u)* + (2 — z)* =r? (1.3)

The point of intersection of the surfaces of n of these spheres is obtained by letting i = 1,2, ..., n,
and solving the resulting n nonlinear equations simultaneously to eliminate two coordinates.
This solution technique is not feasible because it produces a nonlinear equation of high degree.
Furthermore, since the equations are quadratic, many cases for the signs would have to be
considered.

Linearizing the system of equations will reduce the degree, and convert the problem into one
of finding the point of intersection of several planes. When the exact distances from four
beacons are available, the solution of the system of equations is completely determined. There
are three equations, three unknowns, and exactly one solution. Consequently, the theoretical
minimum number of beacons is four. When approximate distances are used, the position which
is calculated by the direct solution of the linear equations is not acceptable. The sophistication,
needed when working with approximate distances, is dealt with in the linear least squares,
weighted linear least squares, and nonlinear least squares solution techniques.
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The most effective approach presented in this thesis is the nonlinear least squares method. Table
1.2 summarizes the errors produced by the various calculation methods tested in this thesis
when exact distances are used. Table 1.3 is a similar summary of these errors when approximate
distances are used. The information in these two tables is discussed in detail throughout this
thesis. The nonlinear least squares method calculates the locations within the required 5.0 foot
tolerance for both exact and approximate distances. The accuracy of the calculated position is
degraded when the elevation of the equipment in the mine is located above the elevation of the
lowest beacon; and when the equipment is located outside the perimeter of the beacons.

Tab. 1.2: Summary of Errors Calculated by Various Solution Techniques using Exact Distances

Results from Various Solution Methods
Linear Nonlinear
Test Linearized | Least | Arithmetic | Weighted Least

Coordinates | Equations | Squares | Average Average | Squares
x | 480000 0.000 0.000 0.000
y | 1093000 0.000 0.000 0.000
z 4668 0.562 -0.313 -0.261 -0.112 0.014
x 480000 0.000 0.000 0.000
y | 1093000 0.000 0.000 0.000
z 4525 0.562 -1.000 -0.019 -0.005 -0.010
x| 480000 0.000 0.000 0.000
y | 1095500 0.000 0.000 0.000
2 4525 0.219 -0.039 0.017 -0.003 0.000

1.2.3 Applications

The usefulness of the mathematical solution of the trilateration positioning problem presented
in this thesis is not restricted to mining applications. This solution could be used to improve
the accuracy of existing trilateration applications, or it could be implemented in new electronic
positioning systems. Possible applications of this solution include precision farming; underwater
positioning; navigational aids for ships, aircraft, or automobiles; determining the position of
aircraft, rockets, missiles, and satellites; and any of the existing trilateration systems listed
below.

Various positioning systems which apply trilateration principles are currently in use worldwide.
A brief search in the literature led to the following examples. There are numerous military
applications of trilateration. One such application is the Global Positioning System, which
was developed by the Department of Defense. This system uses a constellation of satellites
which transmit radio signal timing data to mobile receivers on earth. These receivers calculate
unknown locations by using the satellites known orbital ephemeris, the radio signal timing data,
and a combination of the Doppler principle and trilateration. The satellites produce two signals,
the Standard Positioning Service which is available for civilian use, and the more accurate
Precise Positioning Service which is coded and restricted to military use. Accurate elevations
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Tab. 1.3: Summary of Errors Calculated by Various Solution Techniques using Approximate Distances

Results from Various Solution Methods
Linear Nonlinear
Test Linearized | Least | Arithmetic | Weighted Least

Coordinates | Equations | Squares | Average Average | Squares
x | 480000 -0.469 0.219 -0.062
y | 1093000 -0.125 0.875 0.125
z 4668 -10.750 | 13.437 -8.279 -19.725 -4.101
x | 480000 -0.469 0.250 -0.063
y | 1093000 -0.125 0.875 0.125
z 4525 -11.000 | 13.375 5.259 2.234 -1.514
x | 480000 -0.375 0.219 -0.062
y | 1095500 -0.500 0.875 0.375
2 4525 -35.813 | 14.039 15.275 10.312 1.271

are not available from this system on a real time basis [Remondi 1991]. Logan International
Airport uses a radar based trilateration system for locating and identifying aircraft and other
transponder equipped vehicles on the surface of the airport [Manning 1979]. The Geodetic
Survey of Canada uses a trilateration system that involves the use of an aircraft flying between
ground stations. In this application the distances between the aircraft and the ground stations
are computed to calculate a position on the surface of the earth [DeLoach 1963]. The Rome
Air Development Center at Griffiss Air Force Base uses a ground based system to determine
the position of aircraft in flight [Merchant 1975).



2. LINEARIZATION

The procedures which were used to linearize and solve the equations (1.3) for the intersection of
several spheres are based on geometry, linear algebra, and analysis. This linearization process
reduces the degree, and converts the problem into one of finding the point of intersection of
several planes. The solution of the system of linearized equations is completely determined
when the exact distances from four beacons are known.

2.1 Development of the Linear System

The following mathematical notation was introduced in Section 1.2.2.
The constraints are the equations of the spheres with radii r;,

(z—z)l+@y—u)l+(z—-2)P=r (bt =12:...m) (2.1)

The j* constraint is used as a linearizing tool. Adding and subtracting x;,y; and z; in (2.1)
gives
Bt Pyl Hy= i~ sl Fle-ste =8 =5 (2.2)

with (:1=1,2,...,5—-1,5+1,...,n).
Expanding and regrouping the terms, leads to
(= — ) (@i — ;) + (y — y;) (Wi — y5) + (2 — 2)(zi — 2)
i
= 3l —)+ @y —9)* + (2 — )

2
S ) - e R = )
= %[732 —ri® + djj] = by, (2.3)
where
dij = \/(xz —z;)% 4+ (v — ;)% + (2 — 2;)? (2.4)

is the distance between beacons B; and Bj.

Since it does not matter which constraint is used as a linearizing tool, arbitrarily select the first
constraint (j = 1). This is analogous to selecting the first beacon. Since i = 2,3,...,n, this
leads to a linear system of (n — 1) equations in 3 unknowns:

(z—z1)(@2 —21) + (¥ — 1) (Y2 — 1) + (2 — 21)(22 — 21)
= %[712 — ’r22 + d%l] = by (25)
(x —z1)(z3 — z1) + (¥ —v1)(ys — 1) + (2 — 21)(23 — 21)
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1
= *2-[7‘12 — T'32 + dgl] = b31 (26)

(=21 )(@n — 21) + @ — 1) (Wn — 1) + (2 — 21) (2 — 21)

1
= —2—[7“12 = 7'”2 + dil] = bnlv (27)

This linear system is easily written in matrix form

AT =1, (2.8)
with
To— %1 Yo—Y1 22—21 v — bai
T3 — T — 23— 2 Tl & b
A= 3. 1 y3‘yl 3‘ 1 - P N 31 (2‘9)
Z— 21
In—T1 Yn—Y1 Zn— 21 b

The linear system (2.8) has (n — 1) equations in three unknowns. Therefore, theoretically only
four beacons (n = 4) are needed to determine the unique position of a piece of equipment in
the mine; provided no more than two beacons are co-linear.

2.2 Geometrical Interpretation of the Linear System

In this section we digress by showing two alternative geometrical techniques to derive the
linear system (2.8). The two alternative methods involve the use of analytic geometry, and
trigonometry. In turn, they provide a nice geometrical interpretation of the equations in (2.8).

2.2.1 Analytic Geometry

The following analysis uses analytic geometry to show that each of the equations in the linear
system (2.8) represents a plane.
Select equation (2.5), the first equation of the system (2.8), for analysis:

(z—z1)(x2 —21) + (¥ — 1) (Y2 — 1) + (2 — 21) (22 — 1)

1
= 5[7"12 — 1y + djy] = b1 (2.10)
In Figure 2.1, the points B (z1,y1,21) and Bs (z2,ys, 22) refer to two beacon locations and
point P (z,y, z) represents the unknown point. The point O represents the (arbitrary) origin
of the cartesian coordinate system. Further denote the plane PB;B; by «.
Straightforward algebra allows us to rewrite (2.10) in the form

(z — zo)(z2 — 21) + (¥ — Yo)(¥2 — 1) + (2 — 20) (22 — 21) = 0, (2.11)
with

b 1
d%z(xg —T) = %[(rf —112%)(z1 — x2) + d2o(z1 + T2))],
1

To = x1 +
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b 1
Yo = h + %(yz - yl) — —-2'—[(7"22 - 7"12)(211 - yz) + d§2(yl + y2)], (2-12)
dlZ 2d12

b

20 = 2+ d%(ZQ —2z1) = (r22 — 7"12)(21 — )+ dfz(zl + 22)].
12

1
%[
Using analytic geometry, it is obvious that (2.11) is the normal form of the plane [ containing
the points P(z,y,z) and By (xg, Yo, 20), with normal vector N = R, — R;. Vector N has
components (T —x1, Yo —Y1, 22—21). Vector M is defined as M =B?P= R—R,, with components
(x — o,y — Yo, 2 — 20). Equation (2.11) is obtained by expressing that vector M is orthogonal to
vector N. In mathematical notation this is M - N = 0. The planes a and (3 are thus orthogonal.
They intersect along the line carrying the vector M =B,P.

A plane [ is obtained for each of the equations in the linear system (2.8). The coordinates

of the point of intersection of these [-planes is the location P(z,y, z) of the equipment in the
mine. Three of these [-planes are needed to uniquely determine this position.

2.2.2 Trigonometry

The following analysis uses trigonometry to derive the linear system (2.8). Consider the triangle
B1B;P in _Iiigure 2.2, and let O be the arbitrary origin of the coordinate system. Recall
that 7} =B, P= R — R, has components (z — 1,y — y1,2 — z1) and 73 =B?P . Furthermore,
N = R} — R} = r3 — 71 has components (z2 — Z1,Y2 — Y1, 22 — 21)-

Applying the cosine rule in the triangle By By P, and taking into account that r = ||7i||,r2 =
|73, and dyo = || N||, one obtains

re? = rl+d,—271-N

=’ +diy = 2[(z — x1) (22 — 21) + (¥ — 1) (%2 — ) + (2 — 21) (22 — 21)],
(2.13)

which is nothing else than equation (2.5), the first equation of the linear system (2.8).

2.3 Test Data

To illustrate the accuracy of the solution obtained from the three equations of the linear system
(2.8), it was tested by calculating the location of three test points in separate trials. The
individual trials used the exact and approximate distances from four arbitrarily selected beacons
(B1, By, B3, and By). These distances are listed in Table 2.1. Notice that the errors, r; through
T4, are also given in Table 1.1. In practice, the linear system (2.8) was tested for 1000 points
by using the calibration procedure in Chapter 6.

The position of the three test points in relation to the perimeter of the beacons is illustrated
in Figure 2.3. The first test point, P, (480000, 1093000, 4668), is located inside the perimeter of
the beacons, near the surface of the mine. Its elevation is two feet below the elevation of the
lowest beacon. The second test point, P»(480000, 1093000, 4525), is located under point P, but
at an elevation that is 143 feet below the elevation of the lowest beacon in the mine which is
600 feet deep. The third test point, P;(480000, 1095500, 4525), is located outside the perimeter
of the beacons, at the same elevation as the second test point.
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By (1,91, 21)

P(z,9,2)

lIr2ll = 2

By(2, Y2, 22)

Fig. 2.2: Trigonometrical Interpretation
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B,(x,, 5,5 2,)

=<2

P (480000 , 1095500 , 4525 ) <

l\. ' \Ez(xz’ Voo Zg)
"\ |

P (480000, 1093000, 4668 )
P (480000, 1093000, 4525 ) ®

\
\

\
\

Fig. 2.3: Test Point Locations with Four Beacons
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Using the four designated beacons with beacon B; as the linearizing tool,

_ To— Ty Yo— Y1 22— 21 6440 —1400 24
A= T3 —T1 Ys— Y <3 — 21 = | 7170 —-7870 161 |. (214)
Ty — 21 Ys— Y1 25— 21 2990 —8490 105

Vector b is expressed as

b21
b= (bgl) . (2.15)
b41

The b’s which were calculated with (2.9) for the exact as well as the approximate distances
associated with test point Py (480000, 1093000, 4668) are

. 36433530 . 36430390
bezact = | 61390490 |, bapprozimate = | 61386160 | . (2.16)
42787380 42785710
The b's for test point P,(480000, 1093000, 4525) are
g 36430100 y 36426980
Degact = | 61367450 | Bapprogimate = | 61363150 | . (2.17)
42772350 42770710
The b's for test point P5(480000, 1095500, 4525) are
. 32930120 2 32927540
besuct = | 41692480 | , bapprozimate = | 41687830 | . (2.18)
21547390 21546600
Designate B as
L T 475060
By=| 1w | =] 1096300 | . (2.19)
Solve for the location of the equipment in the mine by using
ﬁ = f =t él
(A=Y + B,. (2.20)

These calculated locations and their associated errors are listed in Table 2.2.

2.4 Analysis

The solution of the linear system AZ=1bis unacceptable because it does not determine the
locations within a tolerance of five feet when used with approximate distances with errors of
up to one-half foot.
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The linear system (2.8) can be used with exact distances and four arbitrarily selected beacons
to accurately calculate an unknown location. For the three test points, this solution technique
calculated the z and y coordinates within a tolerance of 0.0 feet, and the z coordinate (elevation)
within a tolerance of 0.562 feet.

The straightforward solution of any three equations of the linear system (2.8) will produce
unacceptable results when approximate distances are used. It calculated the  and y coordinates
within a 0.5 foot tolerance, and the z coordinate within a 35.813 foot tolerance for the three
test points.

The depth of the test point in the mine does not have a major impact on the accuracy of the
position calculated by this solution technique.

The results produced when the test point is located outside the perimeter of the beacons are
much worse than the results obtained for the points located inside the perimeter.

2.5 Robustness

The robustness of the calculation depends on the condition number of the coefficient matrix.
Let A be any 3 x 3 matrix selected from A as in (2.14). The robustness of the calculation
depends on the condition number ¢(A) = ||A|| ||A~Y|| of the coefficient matrix A. The equations
should be “well-conditioned” in order to be able to determine all three components of & with
high accuracy. The change 8 of the solution & resulting from the changes of A and b is given
by [Noble and Daniel 1988]

1021 pp o ay(loell | NoAT 2.21
=M A g ) 2

where M = ==, with a = |(JA)A~|| < 1. Both the data b and the position of the beacons

(reflected in A) can be changed to optimize the calculation of the position & of the equipment

in the mine.

For matrix A in (2.14), and using the 2-norm, we obtained with MATLAB

[Moler, Little, Bangert, and Kleiman 1989),

c(A) = | A|||A7Y]| = (14538)(0.0252) = 366.3576. (2.22)
Using point P,(480000, 1093000, 4525) and the b’s in (2.17) we compute
. 36426980 36430100 -3120
8b = | 61363150 | — | 61367450 | = | —4300 | . (2.23)
42770710 42772350 —1640
Hence, .
|165]| = 5560, (2.24)
[ Becact]| = 83202000, (2.25)
and

o 475060 480000
IZ|| = ||IR — By| = ||| 1096300 | — | 1093000

4670 4525

—4940
= 3300
145

‘ = 5942.6. (2.26)
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With ||§A|| =0 and & = 0 we have M = 1, and from (2.21) we get

5560

iz|| < : —

5942.6) = 145.4865. (2.27)

With this method the 2-norm of ||6Z]| = ||§R — 05, || < 145.4865, which means that

V(62)2 + (y)? + (02)? < 145 feet. (2.28)

Since dx ~ 0 and dy ~ 0 we estimate 0z ~ 145. We conclude that the z-coordinate could be as
much off as 145 feet.
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Tab. 2.1: Distances from Four Beacons to the Equipment

Exact | Approximate | Distance

Test Data Beacons | Distances Distances Errors
Test Point Inside Mine B, 5940.893 5940.382 -0.457890
Near the Top B, 2420.883 2421.056 0.173050

P, (480000, 1093000, 4668) By 5087.666 5087.983 0.316931
B, 5545.271 5545.082 -0.191205

Test Point Inside Mine B, 5942.607 5492.151 -0.457890
Near the Bottom B, 2426.635 2426.809 0.173050
P»(480000, 1093000, 4525) By 5094.254 5094.570 0.316931
By 5549.874 5549.683 -0.191205

Test Point Outside Mine B 5006.458 5005.998 -0.457890

Near the Bottom By 1624.635 1624.538 0.173050
P3(480000, 1095500, 4525) Bs 7419.664 7419.983 0.316931
By 7937.320 7937.128 -0.191205

Tab. 2.2: Locations Calculated by Linearized Equations

Exact Distances Approximate Distances
Test Calculated Calculated

Test Data Coordinates Position Errors Position Errors
Point Inside Mine 480000.0 || 480000.000 | 0.000 || 479999.531 -0.469
Near the Top 1093000.0 || 1093000.000 | 0.000 || 1092999.875 -0.125
P(z,y,2) 4668.0 4668.562 | 0.562 4657.250 | -10.750
Point Inside Mine 480000.0 || 480000.000 | 0.000 || 479999.531 -0.469
Near the Bottom 1093000.0 || 1093000.000 | 0.000 | 1092999.875 -0.125
Py(z,y,2) 4525.0 4525.562 | 0.562 4514.000 -11.000
Point Outside Mine 480000.0 || 480000.000 | 0.000 || 479999.625 -0.375
Near the Bottom 1095500.0 || 1095500.000 | 0.000 || 1095499.500 -0.500
P3(z,y, 2) 4525.0 4525.219 | 0.219 4489.187 | -35.813




3. LINEAR LEAST SQUARES METHOD

In this chapter we will show that applying the linear least squares method to the linear system
(2.8) is an unacceptable solution technique because it does not calculate the locations within a
tolerance of five feet when used with approximate distances. The equipment locations obtained
by the entire linear least squares method are generally more accurate than the locations obtained
by solving four equations of the linear system (2.8) directly.

3.1 Development of the Linear Least Squares Method

In practice, the distances r; are only approximate. Thus the problem requires the determination
of & such that AZ ~ b. Minimizing the sum of the squares of the residuals,

e

5 - AZ) (- AS), (3.1)
leads to the normal equation [Noble and Daniel 1988]
ATAT=ATh (3:2)

for &.

There are several methods to solve (3.2) for #. The condition number of AT A determines which
method is best.

If ATA is non-singular and well-conditioned then

7= (ATA)'ATh (3.3)

is used.

If ATA is singular or badly conditioned then the normalized QR-decomposition

[Noble and Daniel 1988] of A is generally used. In this method A = QR, where Q is an
orthonormal matrix and R is upper-triangular matrix. The solution for ¥ in the normalized
QR-decomposition is then found from

Rz=QTb (3.4)

by back substitution when A is full rank.

It may happen that the matrix AT A is close to singular even when the original matrix A was
not close to singular. For situations like that, QR decomposition may overcome the problem.
If not, singular value decomposition (SVD) can be used to solve the least squares problem fairly
accurately.
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3.2 Singular Value Decomposition (SVD)

The optimal solution Zj is then given by 7y = A*b. The pseudo-inverse

[Noble and Daniel 1988] A" = VX*U# involves the unitary matrices U, V occurring in the
SVD of A, this is A = UXV#, The matrix X is obtained from the “diagonal” matrix X as
follows: The p x ¢ matrix X has entries < ¥ >;;=0if ¢ # jand < X >;;=0; 2 0for 1 <i <k
and k + 1 <4 < min{p, q}. The numbers o; are called the singular values. The matrix XV is
then the ¢ x p matrix whose nonzero entries are < X% >;= i, for1 <i<k.

To detect degeneracy of the matrix A one computes the ratio 01/0,, where oy is the largest
singular value and o, is the smallest singular value when A is full rank. The ratio o1/, may
be regarded as a condition number of the matrix A. It is not the same condition number as in
(2.21), but is usually about the same order of magnitude numerically.

The smallest singular value, o, is the distance in the 2-norm from A to the nearest singular
matrix. The fact that o1/0, is small may be considered as a condition of near-singularity of A
[Kahaner, Moler, and Nash 1989][Lawson, and Hanson 1974].

3.3 Test Data

To investigate the accuracy of the solution produced by the linear least squares method, it was
tested by calculating the location of three test points in separate trials. The individual trials
used exact and approximate distances from eight beacons. The errors are the same as in Table
1.1. These distances are listed in Table 3.1. In practice, the linear least squares method was
tested for 1000 points by using the calibration procedure in Chapter 6.

The position of the three test points in relation to the eight beacons is illustrated in Figure 3.1.
The first test point, P;(480000, 1093000, 4668), is located inside the perimeter of the beacons,
at an elevation that is two feet below the elevation of the lowest beacon. The second test point,
P5(480000, 1093000, 4525), is located under point P;, but at an elevation that is 143 feet below
the elevation of the lowest beacon. The third test point, P3(480000,1095500,4525), is located
outside the perimeter of the beacons, at the same elevation as the second test point.

Using the eight beacons, and beacon B, as the linearizing tool, we now have

To— Ty Yo— Y 22— 21 6440 —1400 24
T3 —2T1 Ys—Y1 23— 21 7170 —7870 161
Ty —T1 Ya—Y1 Zs— 21 2990 —8490 105
A=|25—27 ys—y1 25—2 | = | —3630 —7720 82 |. (3.5)
Te —T1 Ys — Y1 < — <1 —6340 —5060 133
Tyrp—Xy Yr—Yi <7384 —7660 —2320 35

Tg—T1 Ys— Y1 28— 21 —6330 1040 il
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Tab. 3.1: Distances from Eight Beacons to the Equipment

Exact Approximate | Distance

Test Data Beacon | Distances Distances Errors
B 5940.893 5940.382 -0.457890
B, 2420.883 2421.056 0.173050
Point Inside Mine B3 5087.666 5087.983 0.316931
Near the Top By 5545.271 5545.082 -0.191205
Py (480000, 1093000, 4668) Bs 9643.044 9643.513 0.468339
Bg 11417.270 11417.420 0.141141
By 12638.110 12638.430 0.328659
By 12077.030 12076.640 -0.39046
B 5942.607 5492.151 -0.457890
B, 2426.635 2426.809 0.173050
Point Inside Mine Bs 5094.254 5094.570 0.316931
Near the Bottom B, 5549.874 5549.683 -0.191205
P5(480000, 1093000, 4525) Bs 9645.353 9645.819 0.468339
Bg 11419.870 11420.000 0.141141
By 12639.330 12639.660 0.328659
By 12078.820 12078.420 -0.39046
B, 5006.458 5005.998 -0.457890
B, 1624.635 1624.538 0.173050
Point Outside Mine B3 7419.664 7419.983 0.316931
Near the Bottom By 7937.32 7937.128 -0.191205
P5(480000, 1095500, 4525) Bs 11047.380 11017.850 0.468339
Bs 12060.820 12060.950 0.141141
By 12692.620 12692.950 0.328659
By 11421.370 11420.980 -0.39046
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By (x5, ¥g, 24)
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/ e | |
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/ P (480000, 1095500 , 4525 ) &__
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wB4 Xy ¥ 24)

Fig. 3.1: Test Point Locations with Eight Beacons
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Vector b is expressed as

S

(3.6)

The b’s which were calculated with the exact and approximate distances associated with test
point P; (480000, 1093000, 4668) are

1

bezact ==

The b’s for test point P,(480000, 1093000, 4525) are

i

bexact =

The b’s for test point P3(480000, 1095500, 4525) are

{

bea:act =

The ATA for P;(480000, 1093000, 4668) for both exact and approximate distances is

For point P,(480000, 1093000, 4525)

36433530 36430390
61390490 61386160
42787380 42785710
7543642 Dapprozimate = | 7543692
—14621910 — 14626250
—30184530 —30191370
—34702420 —34700410
36430100 36426980
61367450 61363150
42772350 3 42770710
7531882 Dapprowimate = | 7524660
—14640990 —14645310
—30189410 —30196370
—34713480 —34711440
32930120 32927540
41692480 41687830
21547390 21546600
—11768090 Dapprogimate = | —11775480
—27290940 —27294910
—35989400 —35996000
—32113340 —32111160
253939600 —19537000 —273510
ATA = (—19537000 227643000 —3499260) .
—273510  —3499260 69089
253939600 —19537000 —273510
ATA = (-19537000 227643000 —3499260) j
—273510  —3499260 69089

(3.8)

(3.10)

(3.11)
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Tab. 3.2: Locations Calculated by Linear Least Squares

Exact Distances Approximate Distances
Test Calculated Calculated

Test Data Coordinates Position Errors Position Errors
Point Inside Mine 480000 || 480000.000 | 0.000 || 480000.219 0.219
Near the Top 1093000 || 1093000.000 | 0.000 || 1093000.875 0.875
Py(z,y,2) 4668 4667.687 | -0.313 4681.437 13.437
Point Inside Mine 480000 || 480000.000 | 0.000 || 480000.250 0.250
Near the Bottom 1093000 || 1093000.000 | 0.000 || 1093000.875 0.875
Py(x,y, 2) 4525 4524.000 | -1.000 4538.375 13.375
Point Outside Mine 480000 || 480000.000 | 0.000 || 480000.219 0.219
Near the Bottom 1095500 || 1095500.000 | 0.000 || 1095500.875 0.875
Ps(z,y,2) 4525 4524.961 | -0.039 4539.039 14.039

and for P5(480000, 1095500, 4525)

253939600 —19537000 —273510
ATA = | —19537000 227643000 —3499260 | .
—273510 —3499260 69089

(3.12)

The AT for P (480000, 1093000, 4668), using exact and approximate distances respectively, are

) 1318935000000 B 1318973000000
ATberoet = | —847727400000 | , AT bopprozimate = | —847578900000 | . (3.13)
10196270000 10194060000
For P, (480000, 1093000, 4525)
B 1318974000000 ) 1319012000000
ATbepoer = | —847226600000 | AT bopprozimate = | —847078600000 |,  (3.14)
10186370000 10184180000
and for P5(480000, 1095500, 4525)
B 1270131000000 B 1270167000000
ATbegoe = | —278120000000 |, AT bopprozimate = | —277978400000 | . (3.15)
1438253000 1436164000

Since AT A is non-singular, we solve (3.3) for Z to determine the location of the equipment in
the mine. These calculated locations for the three test points are listed in Table 3.2.

3.4 Analysis

The linear least squares method as implemented here is an unacceptable solution technique
because it does not calculate the locations within a tolerance of less than five feet.
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The linear least squares solution in (3.3) can be used with exact distances and more than four
beacons to accurately calculate an unknown location. For the three test points, this solution
technique calculated the z and y coordinates within a tolerance of 0.0 feet, and the z coordinate
(elevation) within a tolerance of 1.000 feet.

The linear least squares solution technique produces unacceptable results when approximate
distances are used. The z and y coordinates are within a 0.875 foot tolerance, but the z
coordinate is within only a 14.039 foot tolerance for the three test points.

The depth of the test point in the mine does not appear to have a major impact on the accuracy
of the position calculated by this solution technique.

The results for a test point located outside the perimeter of the beacons are of the same order
of magnitude as the results for the points located inside the perimeter.

The impact of the approximate distances on the accuracy of the calculated elevation is magnified
by a condition which is inherent in open pit mining operations in Wyoming. The magnitudes
of the z and y coordinates are substantially larger than the magnitude of the z coordinate
because the coal is relatively close to the surface of the mine. This difference in scale, introduces
inaccuracy in the calculated z coordinate (elevation).

3.5 Robustness

We use two different methods to analyze the robustness of the linear least squares method.
The first technique involves singular value decomposition. The second technique uses symbolic
manipulation. It allows us to predict theoretically the errors on the coordinates of the calculated
location.

3.5.1 Application of Singular Value Decomposition

To analyze the inaccuracy that is introduced by the differences in magnitude of the coor-
dinates we perform a singular value decomposition on matrix A in (3.5) using MATLAB
[Moler, Little, Bangert, and Kleiman 1989].

Matrix A has singular values

o1 = 16259, (3.16)
oy = 14741, (3.17)
and
o3 = 118. (3.18)
Hence,
01/03 = 16259/118 = 137.788, (3.19)

which confirms that the entries in the third column of A are about 100 times smaller than the
entries in the first column of A.
Furthermore,

A =UxVH (3.20)
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with
0.3901 —0.1216  0.1425 0.4442 0.4634 0.5609 0.2933
0.6169 0.2425 0.4632 —0.0262 —-0.4278 0.0860 —0.3937
0.4079 0.4129 —-0.1722 -0.5263 0.1164 —0.1285 0.5713
U= 00263 05780 —0.3926 0.6619 —0.1840 —0.1913 0.0495 |, (3.21)
—0.1977  0.5053 0.3365 —0.0662 0.6641 —0.1501 —0.3528
—0.3487 0.3833 —0.1568 —0.2424 —-0.2092 0.7731 —0.0822
—0.3736  0.1398 0.6660 0.1537 —0.2647 —-0.0681 0.5467
0.8825 —0.4703 0.0023
V= (-—0.4702 —0.8824 0.0156) , (3.22)
0.0053  0.0148  0.9999
16259 0 0
0 14741 0
0 0 118
s=| o 0 0 (3.23)
0 0 0
0 0 0
0 0 0

Let us continue with point P (480000, 1093000, 4525) and gamozimate in (3.8). Since neither of
the singular values is very close to zero, we compute the true pseudo-inverse of A, namely

At=VIHUH
with
0.00006150 0 0 0.0 0 0
Bt = 0 0.00006784 0 IR ¢
0 0 0.0085 0 0 0 O
We obtain
1 2.505 2574 0.896 -—-1.701 -2.685 -—3.115
+:100000 —0.400 —-3.236 —3.652 —3.536 —2.453 —1.286
0.001 0.045 0055 0059 0044  0.027
The optimal solution is then given by
. 4940.2
37_6 =5 A+ approzimate = —32991.0 )
—131.8
hence,
3 J 480000
R =1z3+ By = | 1093000 | .
4500

This result is not better than what could be obtained via (3.3).

(3.24)

) : (3.25)

Lo
0244 |. (3.26)
0.002

(3.27)

(3.28)
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Replacing 1/03 by 0 in ¥ does not improve matters much. Indeed, with
~ 0.00006150 0 000 00
Yt = 0 0.00006784 0 0 0 O O (3.29)
0 0 00 0 0O
one would obtain
. 480000
R = 1093000 |, (3.30)

a result worse than what follows from (3.3).

3.5.2 Application of Symbolic Manipulation

To analyze the effects of the errors on the distance measurements we perform a symbolic
calculation with MACSYMA [Symbolics 1988]. In this calculation we use the beacon locations
n (1.1), and the point P»(480000, 1093000, 4525). Using these numerical values we solve for z,
y, and z in terms of errl, err2, err3, errd, errd, err6, err7, and err8, where errl represents

the symbolic error on the distance associated with the first beacon, etc.
Using this method we get the theoretical errors on the coordinates of P :
dz = —0.00000596589(err8)? — 0.144122(err8) — 0.00001708401(errT7)?
—0.431861(err7) — 0.00001019150(err6)? — 0.232771(err6)
— 0.00001228196(err5)? — 0.236928(err5) + 0.00000282727 (err4)?
+0.031382(err4) + 0.00001732629(err3)? + 0.176529(err3)
+0.00001389623(err2)? + 0.067442(err2) + 0.00001147358(err1)?
+ 0.136366(errl),

Sy= 0.00004504562(err8)? + 1.088196(err8) — 0.00001674421 (err7)>
— 0.423271(err7) + 0.00000987568(err6)? + 0.225558 (err6)
— 0.00004351283(err5)? — 0.839393(err5) — 0.00002958805(err4)?
— 0.328420(err4) + 0.00001429731(err3)? + 0.145668(err3)
+0.00000737499(err2)? + 0.035793(err2) + 0.00001325149(err1)?
+ 0.157496(errl),

and

§z= 0.002815000(err8)? + 68.00692(err8) — 0.00066240(err7)?
— 16.74474(err7) + 0.001422000(err6)? + 32.48654(err6)
— 0.00165900(err5)? — 32.00419(err5) — 0.000727510(errd)?
— 8.075191(errd) + 0.00195800(err3)? + 19.94801(err3)
+0.000602234(err2)? + 2.922807(err2) — 0.00374900(err1)?
— 44.55374(errl) + 0.984375.

(3.31)

(3.32)

(3.33)
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To get an overall estimate of how accurate the distances need to be for this specific test point
we perform the following calculation. Assume that

grrl = errd == =& = A, (3.34)

Starting with the elevation, add the absolute values of the coefficients of the linear terms in errl
through err8 in (3.33). Similarly, add the absolute values of the coefficients of the quadratic
terms in errl through err8. Requiring an accuracy of five feet on the elevation of the equipment
in the mine, leads to

(224.741)A + (0.01359)A?% < 5 feet. (3.35)

Solving for A gives A ~ 0.022 feet. This means that the error on the distances should be
less than 0.022 feet, in order to calculate the elevation within a tolerance of five feet. Similar
calculations for the z and y coordinates requires that the error on the distances should be less
than 3.432 and 1.542 feet respectively.

If the errors in Table 1.1 are used, we can evaluate (3.31), (3.32), and (3.33). Substituting the
errors for errl through err8, gives the results in Table 3.3. This table also lists the results for
the same data using the linear least squares method directly. The errors generated by both
methods are equal, as expected.

Tab. 3.3: Comparison of the Locations Calculated Directly using Linear Least Squares, and the Lo-
cations Calculated by Substituting Known Errors into the Symbolic Linear Least Squares

Solution
Symbolic Equations || Linear Least Squares
Test Calculated Calculated
Test Data Coordinates Position Errors Position Errors
Point Inside Mine 480000 || 480000.250 | 0.250 || 480000.250 | 0.250
Near the Bottom 1093001 || 1093001.875 | 0.875 || 1093000.875 | 0.875
Pz, y,2) 4525 4538.875 | 13,370 4538.375 | 13.375




4. AVERAGING AND WEIGHTING TECHNIQUES

In the previous chapters we obtained good results for the  and y coordinates. Returning to the
equations of the spheres, we could calculate the corresponding values of z and use appropriate
averaging. The z coordinates calculated from the weighted average and arithmetic average are
not within the required 5.0 foot tolerance when these techniques are used with approximate
distances. The weighting and averaging methods applied to the z coordinate generally provide
a more accurate result for the elevation than the z coordinate obtained from the linear least
squares method alone. These techniques reduce the impact of the differences in magnitude
between the x and y coordinates, and the z coordinate. Their effectiveness is limited when the
elevation of the equipment is too close to or above the elevation of the more or less common
plane of the beacons, and when the equipment is located outside the perimeter of the beacons.

4.1 Development of Averaging and Weighting Techniques

Averaging and weighting techniques can be applied to the z-coordinate to obtain a better guess
for the elevation of the piece of equipment.
4.1.1 Arithmetic Average

One way to obtain a better approximation of the value for the z-coordinate is to first calculate
z and y from equation (3.3), and then solve each of the given constraints in (2.1) for z,

2Rzt rE— (z— )% — (y — w)?, (4.1)

where ¢ = 1,2, ...,n. This gives n values for z which are denoted by zyy (k= 1,2,...,n).

If we restrict this solution method to applications where the elevation of the equipment in the
mine is lower than all of the beacons, then only the — sign in (4.1) is relevant. Since the + sign
was eliminated from (4.1), an arithmetic average can be calculated for the n values of z(;. In
practice, we will only take the average of the real values of zxy. This arithmetic average is the
value that best approximates z in a least squares sense.

4.1.2 Weighted Average

A weighted average of the z( values provides a better solution than the arithmetic average
[Grossman 1969].

To illustrate the weighted average, consider the error f; between the measured distance r; and
the theoretical distance 7, from the bulldozer to the first beacon , i.e.

fi=f—ri=y@-z)?+ @G -yn)+ (- 22— (4.2)
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Let (Z, 7, Z) denote a ‘good’ guess for (z,y,z) and let (dz,dy,dz) denote the errors on these
coordinates. Taylor expansion produces

filz,y,2) = fi(@+ 0z, + 6y, 2+ d2)

= f@55+ (9L s [ 22 8y
oxr ) . oy ) . .
r=%,y=7,2=% z=F,y=y§,2=%
dfi

Taking into account the explicit form of f; as in (4.2), one obtains

f—‘l'l

b ) = ~7 ~7~ el 5
S T e
y—u 22—
+ — oy + — 0z + ..., 4.4
f1(Z,9,2) +m d f1(Z,9,2) + 7 5 e
where
f[(2,9,2) = \/(j —n P+ -nP+E-—al—r (4.5)

This result reveals that the weight factors should be proportional to the reciprocals of the
distances. Therefore, a good approximation will be

1
= A ligiih (4.6)
b P S

where the sum is only taken over those values of k for which the corresponding zg; from
equation (4.1) is real.

4.2 Test Data

To perform a suitable test we calculate the  and y coordinates for the three test points given in
Table 3.1 using the linear least squares method. Keeping the x and y coordinates fixed we then
use arithmetic and weighted averaging to calculate the values for the elevation z. A comparison
of the values of the z coordinates obtained by the linear least squares, by arithmetic averaging,
and by weighted averaging is found in Table 4.1.

4.3 Analysis

The arithmetic average and weighted average give unacceptable results because they do not
determine the locations within a tolerance of 5.0 feet when used with approximate distances.
The z coordinate obtained from the weighted average is generally more accurate than the z
coordinates obtained from the arithmetic average, and the linear least squares techniques. The
z obtained from the arithmetic average is generally more accurate than the z obtained from
the linear least squares.
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Tab. 4.1: Locations Calculated by Averaging Techniques

Exact Distances Approximate Distances
Calculated Calculated

Test Data Method z Errors B Errors
P(z,y,z) | Linear Least Squares 4667.678 | -0.313 4681.437 13.437
z =4668.0 | Arithmetic Average 4667.739 | -0.261 4659.721 -8.279
Weighted Average 4667.888 | -0.112 4648.275 -19.725
Py(z,y,z) | Linear Least Squares 4524.000 | -1.000 4538.375 13.375
2z =4525.0 | Arithmetic Average 4524.981 | -0.019 4530.259 5.259
Weighted Average 4524.995 | -0.005 4527.234 2.234
Py(z,y,z) | Linear Least Squares 4524.961 | -0.039 4539.039 14.039
z =4525.0 | Arithmetic Average 4525.017 | 0.017 4540.275 15.275
Weighted Average 4525.003 | -0.003 4535.312 10.312

The weighted average (3.3), and the arithmetic average can both be used with exact distances to
accurately calculate an unknown location. For the three test points, these solution techniques
calculated the z coordinate within a tolerance of 0.112 feet, and 0.261 feet respectively.

The depth of the test point in the mine has a major impact on the accuracy of the position
calculated by these solution techniques. The accuracy of the calculated z decreases as the
elevation of the equipment in the mine approaches the elevation of the more or less common
plane of the beacons. This adverse impact affects the weighted average more than the arithmetic
average.

When approximate distances were used, the weighted average leads to a z coordinate within a
tolerance of 19.725 feet for the three test points. This 19.725 value was obtained from a point
that has an elevation that is within 2.0 feet of the elevation of the lowest beacon. The tolerance
for the two points near the bottom of the mine was 10.312 feet.

When approximate distances were used, the arithmetic average calculated the z coordinate
within a 15.275 foot tolerance for the three test points. Its tolerance for the two points near
the bottom of the mine was also 15.275 feet.

As a point moves farther outside the perimeter, the accuracy of the calculated z decreases for
both the weighted, and the arithmetic averages.

If the two geometrically ‘bad’ cases are eliminated, the accuracy of the calculated z is within the
required 5.0 foot tolerance for both the weighted average, and the arithmetic average. These
methods produce acceptable results for points that are located inside the mine, at an elevation
that is not close to or above the elevation of the lowest beacon.

4.4 Robustness

The discussion of the robustness in Section 3.5 applies to the arithmetic and weighted average
solution methods because they are modifications of the linear least squares solution method.
The accuracy of the elevations calculated by the two averaging methods could by analyzed
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theoretically. However, such an analysis would be of little use. Simple tests as in Section 4.3
reveal that the z coordinates are still not accurate enough. To drastically improve the accuracy
of the calculated z, we invented a new method which is discussed in Chapter 5.



5. NONLINEAR LEAST SQUARES METHOD

The nonlinear least squares method developed in this chapter is acceptable for use by TBCC.
The accuracy of the z coordinate calculated from approximate distances is within a tolerance
of 5.0 feet. This accuracy is attainable if the equipment is inside the perimeter of the beacons
at an elevation that is not close to or above the elevation of the lowest beacon.

5.1 Development of the Nonlinear Least Squares Method

The sum of the squares of the errors on the distances is minimized in this least squares method.
Recall that r; denotes the approximate distance between the equipment in the mine, and the
ith beacon; and that #; stands for the ezact distance, i.e.

-zl + @y —w)+ (-2 =72 (5.1)

To minimize the sum of the squares of the errors on the distances, one must minimize the

function 5

F(xvyv Z) = il (f@ = ’ri)Q o Zfi("I;)ya Z)Q) (52)

1 =1

with

fi,y,2) =F —ri=/(z —2:)2 + (y — 9:)2 + (2 — 2)2 — s (5.3)

Minimizing the sum of the square errors is a fairly common problem in applied mathematics for
which various algorithms are available [McKeown 1975]. Numerous different approaches can
be taken, from simple to very complicated [Mikhail 1976]. The Newton iteration was selected
from among those available to find the ‘optimal’ solution P(z,y, 2).

A ‘good’ initial guess for (Z, 7, Z) is obtained from the linear least squares method. A ‘better
guess’ for z can be obtained by solving the constraint equations and using the weighted averaging
described in Section 4.1.2.

The only case considered is the case for which F;, > 0 and therefore n > 3. Differentiating

(5.2) with respect to x yields
OF n L8
L e e L 5.4
S 64

ox =

The formulae for the partials with respect to y and z are similar. Introducing the vectors f, 17l

and the Jacobian matrix J, leads to 2
§=23"F, (5.5)
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where o 85 O
oz Ay 0z -
of 0z Of fi oz
oz Ay 0z . f2 . -
' = d= % (5.6)
fn oF
Ofs  On Ofa oz
oz Ay 0z
Using the vector R
. &
he=lw |, (5.7)
Z
Newton iteration gives
Ry = Ry — (J{Tk}J{k})_lJﬂ}f{k}, (5.8)

where Rfk} denotes the kth approximate solution. The subscript {k} in J and f means that

these quantities are evaluated at R;k}. Obviously ﬁ{l} = (F.4. E)T.
Using the explicit form of the function f;(z,y, z) leads to

~ z—z;)? T—x; 5 zi)(z—2zi
;((fwn)z Zg (f1+r€)2y Z(x(fwzsuﬁ )

JTy = Z 2=2i) (y—y:) Z Y- yz) Zg —yi)(z=z) (5.9)

(fz"l‘rz (fz+Tz fz-‘rT'z ’

Z z—x;)(2—2; Zgy—yi)gz—ziz n !z—zi!2
i~ (fit+ri)? (fitri)? = (Firtni)?
1= ¢ —

and

z— fczzfz
Z (f1+7‘1)

f= ng—ﬁ% . (5.10)

(z—zi)fi
Z (f1+7't)

In practice this type of iteration works fast, in particular when the matrix J7J is augmented by
a diagonal matrix which effectively biases the search direction towards that of steepest decent.
Levenberg and Marquardt [Lawson, and Hanson 1974] developed this improvement. As the
solution is approached such modifications can be expected to have a decreasing effect.

5.2 'Test Data

The z, y, and z coordinates of the linear least squares solution are used as the initial values of
z, y, and z in (5.7), (5.8), (5.9), and (5.10).

At the start, and after every iteration the norm squared of the vector in (5.10) is calculated
to determine if a nonlinear least squares iteration will improve the solution any further. If the
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Tab. 5.1: Locations Calculated by Nonlinear Least Squares

Initial 1st 2nd 3rd
Description Guess Iteration Iteration Iteration Error
Py(z,y,2) x | 480000.000 | 480000.000 | 480000.000 | 480000.000 | 0.000
Exact y | 1093000.000 | 1093000.000 | 1093000.000 | 1093000.000 | 0.000
Distances z 4667.687 4667.741 4668.012 4668.014 | 0.014
Norm Squared 0.000247 0.000169 0.000196 0.000109
Py (z,y,2) x| 480000.219 | 479999.969 | 479999.938 | 479999.938 | -0.062
Approximate | y | 1093000.875 | 1093000.375 | 1093000.125 | 1093000.125 | 0.125
Distances z 4681.437 4678.745 4662.531 4663.899 | -4.101
Norm Squared 3.614748 0.018587 0.002435 0.005657
Py(z,y, 2) x | 480000.000 | 480000.000 | 480000.000 | 480000.000 | 0.000
Exact y | 1093000.000 | 1093000.000 | 1093000.000 | 1093000.000 | 0.000
Distances Z 4524.000 4524.442 4524.988 4524.990 | -0.010
Norm Squared 0.002632 0.000661 0.000025 0.0000289
Py(z,y, 2) x | 480000.250 | 480000.000 | 479999.938 | 479999.938 | -0.062
Approximate | y | 1093000.875 | 1093000.250 | 1093000.125 | 1093000.125 | 0.125
Distances z 4538.375 4531.425 4523.331 4523.486 | -1.514
Norm Squared 3.221449 0.018470 0.027271 0.029720
Pi(z,y, 2) z | 480000.000 | 480000.000 | 480000.000 0.000
Exact y | 1095500.000 | 1095500.000 | 1095500.000 0.000
Distances 2 4524.961 4524.973 4525.000 0.000
Norm Squared 0.000030 0.000013 0.000002
P3(z,y,2) z | 480000.219 | 479999.907 | 479999.938 | 479999.938 | -0.062
Approximate | y | 1095500.875 | 1095500.625 | 1095500.375 | 1095500.375 | 0.375
Distances z 4539.039 4534.588 4526.040 4526.271 1" 1.271
Norm Squared 2.952818 0.083713 0.020888 0.014418

norm squared of (5.10) with z = Z, y = ¢, and z = Z is less than or equal to the .00001, the
initial guess (Z, 7, Z) is accepted as the ‘best’ solution. Otherwise, the nonlinear least squares
iterative procedure is implemented. The norm squared of (5.10) of each subsequent solution is
tested to determine if an additional iteration is required to achieve the ‘best’ solution. There
are exceptional cases when the norm squared cycles through several different values, and does
not drop below a level of 0.00001. To avoid this situation a maximum of one hundred iterations
are calculated in practice. Three of the iterations for each the three test points are listed in
Table 5.1.

5.3 Analysis

The nonlinear least squares method gives the most accurate results of all methods developed
and examined in this thesis, when approximate distances are involved in the calculations.
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The nonlinear least squares solution procedure calculates the coordinates of the equipment
within the required tolerance of 5.0 feet for both exact and approximate distances. The use
of this method should be restricted to situations where the equipment in the mine is inside
the perimeter of the beacons, and below the more or less common plane of the beacons. This
method will provide results if these constraints are violated. The accuracy of the solution
decreases as the elevation of the equipment increases, and as the equipment moves farther
outside the perimeter of the beacons.

When exact distances were used, the nonlinear least squares solution technique calculated the
z and y coordinates within a tolerance of 0.0 feet, and the z coordinate within a tolerance of
0.01 feet for the three test points.

When approximate distances were used, the calculated x and y coordinates were within a
tolerance of 0.375 feet, and the z coordinate within a tolerance of 4.101 feet for the three test
points.

The accuracy of the z coordinate, calculated with approximate distances, increases as the

constraints are imposed. The z tolerance for the two points near the bottom of the mine was
1.514 feet.

5.4 Robustness

The complete theoretical analysis of the nonlinear least squares method and the underlying
iteration process are beyond the scope of this thesis.

Further research at the PhD level must determine what the range is for the initial guess so that
the iteration process converges (contraction principle); if the point of convergence is unique;
and what the constraints are on the matrices and the columns for the iteration process to
converge.

A comprehensive search of the literature for other trilateration methods must be performed
to address some of the previous questions. Furthermore, a comparison of the nonlinear least
squares method with other existing methods must be done.



6. CALIBRATION

A computerized calibration procedure was used to test the accuracy of the various solution
techniques presented in this thesis. This standardized calibration procedure makes it possible
to compare the effectiveness of different solution techniques. If the same beacon placement
pattern is used with different solution procedures, the results of this calibration procedure can
be compared to determine which one produces the most accurate results.

The effects of various beacon placement patterns on the accuracy of the positioning solution
can also be tested with this calibration procedure. This capability will allow TBCC to test
the effectiveness of proposed beacon placement patterns, without having to physically install
beacons in the mine. Use of this calibration procedure will help to ensure that the position
which is calculated by their electronic positioning system is within the stated tolerance range.

6.1 Procedure

The first step in the computerized calibration procedure is to establish a rectangular solid which
encompasses the mine. This rectangular solid is formed in the following manner. The easting,
northing, and elevation of the proposed beacon locations is manually input into the calibration
program. These coordinates are then electronically sorted to determine the maximum and
minimum northing and easting, and the minimum beacon elevation of the beacons. These
extreme values are then used to establish a rectangular solid test area. The sides of this
rectangular solid are formed from planes that intersect the beacons which contain the extreme
northing and easting values. These planes have north-south, and east-west orientations. The
top of the solid is formed from a horizontal plane at a specified elevation. This plane is below
the beacon which has the minimum elevation. In this thesis, the distance between the horizontal
plane and the lowest beacon is two feet. The bottom of the solid is formed from the horizontal
plane at the elevation that is considered to be the bottom of the mine. This specified elevation
is manually input into the computer.

The next step in the calibration procedure is to superimpose a three dimensional grid on the
rectangular solid. This grid is formed by passing planes through the rectangular solid at evenly
spaced intervals. These planes have north-south, east-west, and horizontal orientations, which
are parallel to the boundaries of the rectangular solid. When three of these planes intersect,
they intersect at a point. Each of these points of intersection is used to test the accuracy of a
specific solution procedure for the corresponding beacon placement pattern. A representative
rectangular solid with a superimposed grid is shown Figure 6.1.

After the grid of test points is established, the various solution procedures are tested in the
following manner. The exact distances between the test points and the beacons are calculated.
Uniform errors that are within the specified tolerance are then added to these distances. The
position of each point is then calculated using the approximate distances. The coordinates of the
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Fig. 6.1: Rectangular Solid Formed by the Calibration Procedure
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original exact location of each test point, and the coordinates of the location which is calculated
from the approximate distances are then compared. Ideally, these coordinates should equal each
other. The solution procedure is acceptable if the differences between these coordinates is within
the specified tolerance of 5.0 feet. The MACSYMA version of this calibration program is in
Appendix .1.

6.2 Test Data

The number of locations out of 1000 that are not within the 5.0 foot tolerance for the various
solution methods discussed in this thesis are listed in Table 6.1.

Tab. 6.1: Summary of Locations Out of Tolerance Calculated with Various Solution Techniques

Number of Calculated Locations Out or 1000
That Are Not Within a Tolerance of 5.0 Feet

Method Exact Distances | Approximate Distances
Linearized Equations * 0 919
Linear Least Squares 0 856
Arithmetic Average 0 225
Weighted Average 0 142
Nonlinear Least Squares 0 81

* This is a smaller test area than the other cases.

Sample output from the C version of the calibration program is as follows:

At Point 1,1,1

Easting =  467399.711870 Correct =  467400.0 Off = -0.288130
Northing = 1087809.923138 Correct = 1087810.0 Off = -0.076862
Elevation = 4683.241594 Correct = 4668.0 Off = 15.241594

Out of Tolerance

The values labeled ‘Correct’ represent the actual coordinates of the test point. The ‘Oft’ values
represent the ‘error.” These values are the differences between the actual coordinates and the
calculated coordinates. Point(1,1, 1) refers to the location of a point that is based on a record
keeping system which refers to a point in the test grid. The coordinates of the record keeping
system are defined as Point(easting, northing, elevation). The starting point of the record
keeping system is south-west corner of the test grid, at the highest tested elevation. Thus,
Point(1,1,1) is in the south-west corner of the mine. Point(10, 10, 10) refers to the point in the
north-east corner of the test grid, at the lowest elevation tested.

The 81 points that are not within the required tolerance for the nonlinear least squares method
because the z coordinates were off more than 5.0 feet. These points are plotted in Figures 6.2,
6.3, 6.4, 6.5, 6.6, and 6.7. Each of these figures corresponds to an elevation level in the mine
where the z coordinate was off more than five feet. The perimeter of the beacons is also plotted
at each elevation.
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We conclude from these figures, that the accuracy of the calculated position decreases as the
equipment location moves farther outside the perimeter of the beacons; and as the elevation
of the equipment in the mine increases. The worst results are near the top of the mine. In
practice the beacons could be installed on poles, or on the highest points on the rim of the
mine.
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Fig. 6.2: Locations of Calculated Positions at Elevation 4668 (2 Feet Below Lowest Beacon) that are
Not Within a Tolerance of 5.0 Feet
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Fig. 6.3: Locations of Calculated Positions at Elevation 4601.3 (68.7 Feet Below Lowest Beacon) that
are Not Within a Tolerance of 5.0 Feet
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Fig. 6.4: Locations of Calculated Positions at Elevation 4534.6 (135.4 Feet Below Lowest Beacon) that
are Not Within a Tolerance of 5.0 Feet
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Fig. 6.5: Locations of Calculated Positions at Elevation 4468 (200 Feet Below Lowest Beacon) that
are Not Within a Tolerance of 5.0 Feet
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Fig. 6.6: Locations of Calculated Positions at Elevation 4401.3 (268.7 Feet Below Lowest Beacon) that
are Not Within a Tolerance of 5.0 Feet
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Fig. 6.7: Locations of Calculated Positions at Elevation 4268 (400 Feet Below Lowest Beacon) that
are Not Within a Tolerance of 5.0 Feet



7. CONCLUSION

The mathematical solution of the trilateration positioning problem posed by Thunder Basin
Coal Company, was presented in this thesis. This solution will be used in mining applications
to determine the position of a piece of equipment in the mine in three dimensional space using
trilateration with approximate distances.

The nonlinear least squares method gives the most accurate results of all methods developed
and examined in this thesis, when approximate distances were used in the calculations. The
nonlinear least squares solution procedure calculates the exact position when exact distances
are known, and reasonably accurate answers when inaccurate distances are known. Although
this method is restricted to applications where the elevation of the unknown position is below
the elevation of the lowest beacon, this method will provide results if this constraint is violated.
The accuracy of the solution is degraded when the elevation of the unknown position is close to
or above the elevation of the lowest known position, and when the unknown position is outside
the perimeter of the beacons.
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CALIBRATION PROGRAM IN MACSYMA

/* Save the output in the following file
writefile("nout100.out")$

/* MACSYMA command
ratprint:false$

/* The beacon locations are specified here.
/* These beacons were specified as test data by TBCC

/* Beacon 1

x[1]:  475060.
y[1]: 1096300.
g [L3 4670.

/* Beacon 2

x[2]: = 481500.

y[2]: 1094900.
=[2]: 4694 .
/* BEACON 3

x[3]: 482230.
y[3]: 1088430.
z[3]: 4831.
/* BEACON 4

x[4]:  478050.
y[4]: 1087810.
z[4]): 4775.
/* BEACON 5

x[5]:  471430.

y[5]: 1088580.
z[5]: 4752,
/* BEACON 6

x[6]:  468720.

y[6]: 1091240.
z[6] ; 4803.
/* BEACON 7

x[7]: 467400.
y[7]: 1093980.
z[7]: 4705.

0$
0$
0$

0$
0$
0$

0$
0$
0%

0%
0$
0$

0$
0$
0$

0$
0$
0$

0$
0%
0%

/* X Coordinate of Beacon 1
/* Y Coordinate of Beacon 1
/* Z Coordinate of Beacon 1

*/
*/

*/
*/
*/
i/

*/

*/

o/
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/* BEACON 8 %/
x[8]:  468730.0%
y[8]: 1097340.0%

z[8]: 4747.0%

/* n is the Number of Beacons. */
n:8$

/* Relative coordinates are being calculated. */

for i: 2 thru n do(
kl(i,1]: ev(x[i]-x[1],numer),
k[i,2]: ev(y[il-y[1],numer),
k[i,3]: ev(z[i]l-z[1] ,numer),
sqd[i,1]: ev(k[i,1]"2+k[i,2]"2+k([i,3]"2) ,numer)$

/* These are the starting coordinates. The start point is at the */
/* south-west corner of test grid, 2 feet below the lowest beacon. */
xstart: 475060$
ystart: 1087810$

zstart: 4668%

/* (np)~3 is the number of test points. x/
/* With np=10 we will have 1000=10%10%10 test points. */
np:10$

/* This routine fills an array with exact beacon locations; x/
/* calculates the exact distances to "n" beacons; adds distance */
/* errors; calculates locations; and calculates location errors. */

for i:1 thru np do(
for j:1 thru np do(
for k:1 thru np do(

print("FPor Test Point ", 3,%,%,.3,":":k,"1"),
/* The test point is being specified here. */
/* This procedure tests the 1000 point in sequence. x/

xbulact[i,j,k]: ev(xstart + (i-1) * (797/(np-1)) ,numer),
ybulact[i,j,k]: ev(ystart + (j-1) * (8000/(np-1)) ,numer),
zbulact[i, j,k]: ev(zstart - (k-1) * (600/(np-1)),numer),

/* The exact distances are being calculated. x/
for m:1 thru n do(
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r(i,j,k,m]: ev(sqrt((x[m]-xbulactl[i,j,k])" 2
+(y [m] -ybulact[i, j,k]) "2+(z[m]-zbulact[i,j,k]) "2) ,numer)),

/* Uniform errors are added to the exact distances. x/
err[1]: -0.457890,
err[2]: 0.173050,
err[3]: 0.316931,
err[4]: -0.191205,
err[5]: 0.468339,
err(6]: 0.141141,
err(7]: 0.328659,
err[8]: -0.390460,
for m:1 thru n do(
r(i,j,k,m]:r(i,j,k,m]+err[m]),

/* LINEAR LEAST SQUARES */

/* A and b are being calculated here. */
for m: 2 thru n do(
blm,1]: ev((1/2)*(r[i,j,k,1]1"2-r[i,j,k,m] "2+sqd[m,1]) ,numer)),

a: ev(matrix([k[2,1],k([2,2],k[2,3]], [k[3,1],k([3,2],k[3,3]],
(k[4,1],k[4,2] ,k[4,3]], [k[5,1] ,k[5,2],k([5,3]],
lel6,1] k(6,21 k16,311 ,[k[7,1],k[7,2] k7,311,
(x[8,1],k[8,2],k[8,3]]) ,numer),

b: ev(matrix([b[2,1]], [b[3,1]1],[b(4,1]],[b(5,11], [bl6,1]1],
(b(7,111,[b[8,1]1]) ,numer),

/* The transpose of A times A (traa); and */
/* the transpose of A times B (trab) are calculated */
tra:transpose(a),

traa: tra.a,

trab: tra.b,
/* The solution of the linear least squares */
/* from the relative positions is calculated. */

solx : ev(((traa)~~(-1)).trab,numer),

/* Results obtained with the induced random errors are x/
/* obtained by adding the coordinates of the first beacon */
xbul: ev(solx[1,1]+x[1],numer),
ybul: ev(solx[2,1]+y[1],numer),
zbul: ev(solx[3,1]+z[1],numer),
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/* The location errors are calculated by subtracting the
/* test coordinates from the calculated coordinates.
/* The calculated location and the error are printed
print("x linear 1sq =",xbul,"xerr",xbul-xbulact[i,j,k]),
print("y linear 1lsq =",ybul,"yerr",ybul-ybulact[i,j,k]),
print("z linear 1lsq =",zbul,"zerr",zbul-zbulact[i,j,k]),

/* ARITHMETIC AVERAGE */
/* WEIGHTED AVERAGE  */

/* azbul, the arithmetic average of the z is calculated.
/* wzbul, the weighted average of the z, using a weight

/* factor of f = 1/r, is also calculated.

/* These calculations of z are completed for each beacon
/* for the case of the negative sign after x and y are

/* determined and fixed. The imaginary parts are not used.

acounter:0,
zbulsum:O0,

wcounter:0,
wzbulsum:0,

for m:1 thru n do(
zbul[m] :ev( z[m]-sqrt( (r[i,j,k,m])"2
-(y[m]-ybul) “2-(x[m]-xbul) "2 ) ,numer),

if imagpart(rectform(zbul [m]))=0 then (
acounter:acounter+i1,
zbulsum:zbulsum+zbul [m],
f: ev(1/rli,j,k,m] ,numer),
wcounter:wcounter+f,
wzbul [m] : zbul [m] *f,
wzbulsum:wzbulsum+wzbul [m]) ),

azbul:ev(zbulsum/acounter,numer),

print ("The arithmetic average of real z’s is ",azbul),
print ("The error is ",azbul-zbulactl[i,j,k]),
asolxx:matrix([xbull, [ybull, [azbull),

print("The arithmetic average solution is",asolxx),

wzbul:ev(wzbulsum/wcounter ,numer) ,
print("The weighted average of real z’s is ",wzbul),

*/
*/

*/
*/
*/
*/
*/
*/
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print("The error is ",wzbul-zbulact[i,j,k]),
wsolxx:matrix([xbull, [ybull, [wzbull),
print("The weighted average solution is",wsolxx),

/* NONLINEAR LEAST SQUARES */

/%
/%

Start the iterations with the solution of */
the linear least squares method. x/

solxx:matrix([xbull, [ybull, [zbull),

itercounter:0,

/%

Specify the maximum number of iterations. */

numiter: 100,

for p:1 while itercounter<numiter do(

bbi:

bb2

xit:solxx([1,1],
vit:selxx(2,1],
zit:solxx[3,1],

for m:1 thru n do(
dit [m] :8qreC (xit-xm]) 2+ (yit-ylm]) "2+ (zit-zm])"2 ),
sqdit[m] : (xit-x[m]) "2+ (yit-y[m]) "2+(zit-z[m])"2 ),

for m:1 thru n do(
vii,j,k,m]:dit[m]-r[i,j,k,m] ),

ev(sum(v[i,j,k,m]*(xit-x[m])/dit[m],m,1,n),,numer),

rev(sum(v([i,j,k,m]*(yit-y[m])/dit[m],m,1,n),,numer),
bb3:

ev(sum(v([i,j,k,m]*(zit-z[m])/dit[m],m,1,n) ,numer),

/* Test for deciding if iterations are complete */
normbbsq:ev(bbl~2+bb2"2+bb3"2,numer) ,

print("This is the norm squared of column bb",normbbsq),
if normbbsq > 0.00001 then (

bb:matrix([bb1], [bb2], [bb3]),
aall:ev(sum((xit-x[i])"2/sqdit[i],i,1,n) ,numer),
aal2:ev(sum(((xit-x[1])*(yit-y[i]))/sqdit[i],i,1,n) ,numer),
aal3:ev(sum(((xit-x[i])*(zit-z[i]))/sqdit[i],i,1,n) ,numer),
aa23:ev(sum(((zit-z[1])*(yit-y[i]))/sqdit[i],i,1,n) ,numer),
aa22:ev(sum((yit-y[i])"2/sqdit[i],i,1,n) ,numer),
aa33:ev(sum((zit-z[i]) "2/sqdit[i],i,1,n) ,numer),
aa:matrix([aall,aal2,aal13], [aal2,aa22,aa23],
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[aal3,aa23,aa33]),

invaa: invert(aa),
solxx:ev(solxx-invaa.bb,numer),

print("Nonlinear least squares solution after the",
p,"-th iteration: ", solxx),

print("x error ",solxx[1]-xbulact[i,j,k]),
print("y erorr ",solxx[2]-ybulact(i,j,k]),
print("z error ",solxx[3]-zbulact[i,j,k]),

itercounter:itercounter+1)
else (itercounter:numiter))

/* The iteration is complete for that test point. */
)
)
)$



