
Statistical Methods

in Surveying by Trilateration

William Navidiy�

William S� Murphy Jr�z� and Willy Heremany

yDepartment of Mathematical and Computer Sciences

Colorado School of Mines

Golden� Colorado ����������

z U�S� Army TRADOC Analysis Center � Monterey

Naval Postgraduate School

P�O� Box ��	


Monterey� California 	�	�����	


December 
�� �			

Keywords�

Iteratively reweighted least�squares� Quasi�likelihood� Monte�Carlo simulation�

Trilateration� Computerized surveying� Global Positioning System �GPS�

�



Abstract

Trilateration techniques use distance measurements to survey the spatial coordinates of

unknown positions� In practice� distances are measured with error� and statistical methods

can quantify the uncertainty in the estimate of the unknown location� Three methods for

estimating the three�dimensional position of a point via trilateration are presented� a linear

least squares estimator� an iteratively reweighted least squares estimator� and a nonlinear

least squares technique� In general� the nonlinear least squares technique performs best�

but in some situations a linear estimator could in theory be constructed that would

outperform it�

By eliminating the need to measure angles� trilateration facilitates the implementation of

fully automated real�time positioning systems similar to the global positioning system

�GPS�� The methods presented in this paper are tested in the context of a realistic

positioning problem that was posed by the Thunder Basin Coal Company in Wright�

Wyoming�

� Introduction

Thunder Basin Coal Company �TBCC�� based in Wright� Wyoming� wished to develop a

fully automated surveying system to accurately determine the three�dimensional position of

equipment in an open pit mine� Standard surveying techniques are based on measurement

of angles and a baseline distance to determine the unknown position components �the

latitude x� the longitude y� and the altitude z� of a point relative to a �xed coordinate

system� Such triangulation methods are laborious� expensive and slow� The advent of

accurate electronic distance measuring equipment and high speed computers enables
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surveyors to replace angular measurements with distance measurements by using the

trilateration surveying technique �Laurila �	
�� Mott and Bouchard� �		�� Savidge �	
���

Several advanced and widely used positioning systems were considered for TBCC�s

problem� in particular� the Global Positioning System �GPS� �Leick� �		�� Parkinson and

Spilker� �		��� However� TBCC determined that with GPS as it is available to the civil

community� the vertical position accuracy is insucient� Accurate elevations are key in

mining applications� For example� in dynamic blasting� where the soil atop of the coal is

removed via controlled explosions� both accurate positioning of the drill and precise

measurement of the depth of the bore�hole are essential�

As an alternative to GPS� the engineers at TBCC proposed placing a system of radio

beacons at known locations on the rim of the mine� The coordinates of the beacons would

be carefully determined with conventional surveying methods to nearly perfect accuracy�

To determine the position of a piece of equipment in the mine� each beacon would transmit

a radio signal to the target point� then receive its re�ection� The distance between a

beacon and the target point can be computed as a function of the measured time between

transmission and reception� The spatial coordinates of the target point would then

computed from the measured distances to the various beacons� An experimental setup was

put into place at TBCC in �		�� A diagram of this setup is presented in Figure ��

Electronic systems and electro�optical instruments for distance measurements are fairly

accurate� but measurement error needs to be taken into account� TBCC estimated that the

magnitude of a typical error on the distance from the beacon to the target point would be

about ��� feet� Because of this� there will generally be no point in space whose actual

distances to the known beacons correspond to the measured ones� so methods based on

exact distances will fail to yield a solution�
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Various deterministic procedures have been proposed for approximating the coordinates of

the target point �Danial and Krauthammer� �	
�� Laurila �	
�� Mezera� �	
�� Mott and

Bouchard� �		��� A statistical approach that takes measurement error into account can

produce estimates for the coordinates of the target point along with a con�dence region for

its position�

In principle� many repeated measurements could be made from each beacon� It is possible

that such a sequence would exhibit some degree of autocorrelation� The methods described

here assume that all measurements are independent� This could certainly be achieved by

taking only one measurement per beacon� and we adopt this conservative approach in our

simulation studies� If sequences of nearly independent measurements can be obtained from

each beacon� the accuracy of the methods we describe would be considerably enhanced�

The usefulness of statistical methods for the three�dimensional trilateration positioning

problem is not restricted to mining applications that use radio signals to measure distances�

Our algorithms can be utilized in any system that involves distance measurements obtained

with radar� lasers� or manual measurement� Indeed� there are numerous real�world

applications where triangulation methods for determining positions in a timely� accurate�

and cost e�ective manner are out of the question� Trilateration methods are the most

appropriate in a variety of circumstances that involve aircraft� land vehicle� marine vessel�

and spacecraft navigation �Leick� �		�� Parkinson and Spilker� �		��� New and innovative

applications of high�precision trilateration include dredging operations� precision farming�

underwater positioning� precision landing of aircraft� vehicle tracking systems� construction

related surveying inside large building shells� monitoring of distortion of large objects such

as dams and bridges� robotics applications� guidance systems for smart weapons�

In this paper we present three statistical approaches to the trilateration problem� together
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with detailed comparisons of their performance� The paper is organized as follows� In

section � we present two linear least squares procedures� The �rst involves an exact

linearization of the problem� and estimation by ordinary least squares �OLS�� The second

method uses iteratively reweighted least squares �IRLS� in an e�ort to improve on the OLS

estimator� In section �� we turn to the full non�linear problem and treat it with a

non�linear least squares �NLLS� technique� In section � we compare the accuracy of the

procedures with a Monte�Carlo simulation using actual beacon locations from TBCC� In

section � we describe existing software for NLLS estimators as well as our own

implementation� In section � we discuss our results and present conclusions�

The statistical methods we present are for the most part familiar least�squares procedures�

To obtain a linear least�squares model for trilateration� we developed a new method of

exact linearization� Non�linear least squares models have been discussed by Wolf and

Ghilani ��		��� We show how these results can be extended to unequal variance situations�

using the theory of quasi�likelihood estimation�

� Linear Least�Squares

��� Constructing a Linear Model

With reference to Figure �� let n denote the total number of measurements taken at all

beacons combined� Let � � �x� y� z� denote the spatial coordinates of the target point� Let

Bi � �xi� yi� zi� be the exact location of the beacon at which the ith measurement is taken�

De�ne

di��� �
q
�xi � x�� � �yi � y�� � �zi � z���
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the true distance from the ith beacon to the target point� In order to ensure identi�ability�

we assume that there are enough beacons so that if � �� ��� then there is at least one i for

which di��� �� di��
��� Let ri be the measured distance from the ith beacon to the target

point� We assume that ri � di��� � �i� where the �i are independent� with E��i� � � and

Var��i� � ��� We discuss alternative assumptions on the variance in section ���� Notice

that we do not make any distributional assumptions� such as normality� on �i�

The regression equations

di��� � E�rijx� y� z� �
q
�x� xi�� � �y � yi�� � �z � zi��

are non�linear in the unknowns x� y� z� but a linear regression equation can be developed as

shown below� Alternate methods of linearization have been proposed by Laurila ��	
���

and Parkinson and Spilker ��		���

Let �xr� yr� zr� be the coordinates of any point in R�� which we will refer to as the reference

point� Now for each of the n points �xi� yi� zi�� write

di���
� � �x� xr � xr � xi�

� � �y � yr � yr � yi�
� � �z � zr � zr � zi�

�� ���

Let

dir �
q
�xi � xr�� � �yi � yr�� � �zi � zr���

the distance between the reference point and the location of the beacon at which the ith

measurement was taken� Let

dr��� �
q
�x� xr�� � �y � yr�� � �z � zr���

the distance between the reference point and the target point �x� y� z�� Expanding and

regrouping terms in ���� we obtain

���x� xr��xi � xr� � �y � yr��yi � yr� � �z � zr��zi � zr�� � dr���
� � dir

� � di���
�� ���
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De�ne the matrix

X �

�
�����
� ��x� � xr� ��y� � yr� ��z� � zr�
� ��x� � xr� ��y� � yr� ��z� � zr�
���

���
���

���
� ��xn � xr� ��yn � yr� ��zn � zr�

�
����� � ���

De�ne the parameter vector

� �

�
����
�dr���

� � ��

x� xr

y � yr
z � zr

�
���� � ���

De�ne

Yi � dir
� � ri

�� ���

and let Y denote the vector whose ith component is Yi� Since the dir
� are known constants�

and since E�ri
�jx� y� z� � di���

� � ��� it follows that E�Yi� � dir
� � di���

� � ��� so that

E�Y� � X�� ���

The Yi are independent� and

Var�Yi��Var�ri
���Var��di�����i�

���Var��di����i��i
��� �di���

�����di����������
�� ���

where ��� ��� and �� are the second� third� and fourth moments of the distribution of the �i�

The �rst component of � contains a non�linear function of the components of � � �x� y� z��

so it appears that this is not a linear regression� For now� we ignore the functional

dependence� and treat the �rst component as a free parameter� It will be shown in Section

��� that this does not a�ect the estimation of ��

We describe below a linear regression model that produces the OLS estimator of �� Since

the variances of the Yi are not identical� this estimator is not necessarily optimal� In

principle� one can attempt to improve on the performance of the OLS estimator with an

IRLS regression� in which the variances of the Yi are estimated along with � in an iterative

fashion� We discuss this possibility in Section ����
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��� The Ordinary Least Squares Estimator

To make the regression equation ��� linear in the unknowns x� y� z� note that the span of

the columns of X does not depend on the choice of the reference point� Therefore the value

of X�� does not depend on the reference point� and it follows easily that the values of the

estimates �x� �y� and �z do not depend on the choice of the reference point� This suggests

using the value �� � ��x� �y� �z� as the reference point� This choice makes the rightmost three

columns of X orthogonal to the column of ones� allowing it and the �rst component of ���

to be dropped from the model without a�ecting the estimation of � � �x� y� z��

De�ne X� to be the matrix consisting of the rightmost three columns of ���� and

Y� � Y �X�
��� Then

E�Y�� � X��� �
�

and the OLS estimator of � is

�� � �XT
�X��

��
X

T
�Y�� �	�

Equation �
� guarantees that �� will be unbiased� with covariance matrix

Cov���� � �XT
�X��

��
X

T
��X��X

T
�X��

��� ����

where � is the diagonal matrix whose ith diagonal element is Var�Yi�� given by ���� The

elements of X� depend only on the known locations of the beacons� and the elements of �

depend on the distances from the target point to the beacons� Thus for �xed beacon

positions� the variances of the estimates of the coordinates of the target point will increase

as the distances from the target point to the beacons increase�

Since � is unknown� we cannot use ���� to compute Cov����� Instead� we can compute the

conventional OLS estimate of Cov���� as follows� We �rst compute the residual mean square






s�� Since the design matrix X� has no intercept� it is necessary to regress it out separately

in computing s�� Thus s� is given by

s� �
�

n� �

nX
i��

�Yi � �Y � �Yi�
�� ����

Here �Y � X�
���

Now we can compute the conventional OLS estimate of Cov����� which is s��XT
�X��

��� The

trace of this matrix estimates the mean squared error �MSE� of ��� which is the expected

squared distance from the target point to its estimate� Thus

MSE���� � Trace�s��XT
�X��

���� ����

We can also compute the conventional 	�� con�dence ellipsoid for the true value

� � �x� y� z�� This is the set

S � f� j ��� � ��T �s��XT
�X����� � �� � �F�� n��� ���g� ����

where F�� n��� ��� is the 	�th percentile of the F�� n�� distribution�

��� Iteratively Reweighted Least Squares

Since the variances of the Yi are unequal� the OLS estimator may be improved upon� The

variances of the Yi compose the elements of the diagonal matrix �� If these variances were

known� then the best linear estimator of � would be given by

��opt � �XT
�

��
X���XT���

Y� ����

with covariance matrix

Cov���opt� � �XT
�

��
X���� ����

	



The best linear estimate ��opt of � consists of the last three components of ��opt� Since the

elements of � are unknown� we cannot compute ��opt� However� we can attempt to

approximate it by IRLS� To perform this method� we initialize an estimate �� to the

identity matrix I� and compute �� by ����� We then use the elements of �� to update the

estimate ��� and recompute ��� This process is iterated to convergence�

In principle� it is possible to compute the IRLS estimate �� from a truly linear model� as in

the case of the OLS estimator� Let ��n be the estimate of � after n iterations� For the

n � �st iteration� de�ne the reference point �r by

�r �

Pn
i��Bi���iPn
i�� ����i

�

where Bi � �xi� yi� zi� are the coordinates of the beacon from which the ith measurement

was taken� and ��i is the square root of the ith diagonal element of ��n� Then the �rst

column of the matrix ��
����

X is orthogonal to the other three� so it can be dropped from

the model� along with the �rst component of ���� In practice� this recomputation of the

reference point and the matrix X at each iteration is unnecessary� Identical results will be

obtained by using the full design matrix ���� and estimating �� at each iteration� Upon

convergence the last three components of �� form the IRLS estimator of ��

To update the estimate ��� we express the ith diagonal element of � in terms of the

moments of the �i�

�ii � �di���
��� � �di����� � �� � ��� ����

Let the components of �� be denoted by ��x� �y� �z�� These components are used to estimate

each of the quantities on the right side of ����� Speci�cally� di��� is estimated with di�����

the distance from the beacon at which the ith measurement was made to the point ��� The

moments ��� ��� �� can be expressed in terms of the di��� and the moments of the ri� For
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each measurement i� we have

�� � E�ri
��� di���

�� ����

�� � E�ri
��� di���

� � ���di���� ��
�

�� � E�ri
��� di���

� � ���di���
� � ���di���� ��	�

The estimates are given by

��� �
�

n

nX
i��

ri
� � di����

�
� ����

��� �
�

n

nX
i��

ri
� � di����

�
� ����di����� ����

��� �
�

n

nX
i��

ri
� � di����

�
� ����di����

�
� ����di����� ����

When the sample size is small� it turns out that if all the moment estimators are used

in ����� the IRLS procedure is quite unstable� and frequently fails to converge� An

approximate method� that is considerably more stable� is obtained by ignoring moments

higher than the second� Thus we approximate

�ii � �di���
���� ����

and estimate �� by ����� The justi�cation for this approximation is that the moments of

the measurement error should be much less than the true distance� Thus the right hand

side of ���� is dominated by its �rst term�

After convergence� the covariance matrix of �� is estimated with �XT
�
��
��
X��

��� By analogy

with ���� and ����� we estimate the MSE of �� with

MSE���� � Trace�XT
�
��
��
X��

��� ����

and the nominal 	�� con�dence region is given by

S � f� j ��� � ��TXT
�
��
��
X���� � �� � �F�� n��� ���g� ����

��



� Non�linear Least�Squares

The OLS estimate minimizes the quantity
Pn

i���dir
� � ri

� � di���
���� A simpler sum of

squares is given by

F ��� �
nX

i��

�ri � di����
� �

nX
i��

�
ri �

q
�xi � x�� � �yi � y�� � �zi � z��

��
� ����

The NLLS estimator �� of � is the minimizer of F � The function F ��� is a quasi�likelihood

function �McCullagh and Nelder� �	
	��

If we de�ne J��� to be the n� � matrix

J��� �

�
BBBBBBBBBBB	

�d����
�x

�d����
�y

�d����
�z

�d����
�x

�d����
�y

�d����
�z

���
���

���

�dn���
�x

�dn���
�y

�dn���
�z



CCCCCCCCCCCA
� ����

it then follows from McCullagh and Nelder ��	
	� pp� ������
�� that �� is asymptotically

normal and unbiased� with asymptotic covariance matrix ���J���TJ�������

In practice� �� is estimated with

�

n� �

nX
i��

�ri � di�����
��

and the asymptotic covariance matrix is estimated with

Cov���� � ����J����TJ�������� ��
�

��



Denoting the components of � by �x� y� z�� the matrix J���TJ��� can be written as

J���TJ��� �

�
BBBBBBBB	

Pn
i��

�x�xi�
�

di���
�

Pn
i��

�x�xi��y�yi�

di���
�

Pn
i��

�x�xi��z�zi�

di���
�

Pn
i��

�x�xi��y�yi�

di���
�

Pn
i��

�y�yi��

di���
�

Pn
i��

�y�yi��z�zi�

di���
�

Pn
i��

�x�xi��z�zi�

di���
�

Pn
i��

�y�yi��z�zi�

di���
�

Pn
i��

�z�zi�
�

di���
�



CCCCCCCCA
� ��	�

The diagonal elements of J���TJ��� can be described as follows� For each beacon� the

squared distance between the target point and the beacon is divided into the squared

distance between the x�coordinates �or the y� or z�coordinates�� Then the quantities are

summed across beacons� Since the asymptotic covariance of �� is proportional to the inverse

of J���TJ���� it follows that the NLLS estimator will have smaller MSE when the x� y� and

z components of the distances from the target point to the beacons are approximately

equal� and larger MSE for target points one of whose coordinates is substantially closer to

the beacons than the other coordinates are�

This phenomenon can be seen most clearly in the situation where the beacons are placed

orthogonally to one another� so that the o� diagonal elements of J���TJ��� are equal to ��

Then the asymptotic variances of the estimates of the x� y� and z coordinates of the target

point are given by
hPn

i��
�x�xi��

di���
�

i��
�
hPn

i��
�y�yi��

di���
�

i��
� and

hPn
i��

�z�zi��

di���
�

i��
� respectively�

where di���
� � �xi � x�� � �yi � y�� � �zi � z���

� Simulation Results

Analytic calculations provide asymptotic estimates of variance� which are approximations

to the true variances for �nite samples� In order to assess the accuracy of the asymptotic

variance estimates� and to compare the performance of the various methods� simulation

studies are needed� We performed several simulation studies� based on information and
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data provided by TBCC� They suggested that eight �xed�position radio beacons would be

feasible in terms of cost� The beacons B�� ���� B	 are installed on the rim of the mine� and

their actual locations are determined primarily by topographic considerations� We used the

locations suggested by TBCC� which are shown in Table �� The coordinates given for each

of the eight beacons are accurate distances in feet with respect to a �xed reference point in

western Wyoming that was chosen by TBCC� Figure � presents a perspective view of the

eight beacons�

To study the ways in which the performance of the estimates varies with the location of the

target point� we considered ���� target points� located in a rectangular grid� Figure � shows

the grid of ���� target points� For each of the ���� target points� we constructed �����

data sets� Each data set consisted of one measurement from each beacon� To simulate the

conditions anticipated in TBCC�s mine� the measurements were generated by adding to the

true distance a random error from a uniform distribution on the interval ������ �����

For each data set� we computed the OLS estimate �	�� the nominal estimate of its MSE in

����� the IRLS estimate� the nominal estimate of its MSE in ����� the NLLS estimate� and

the nominal estimate of its MSE in ��
��

In Table � we present the results� To explain the entries in that table� let

�j �j � �� ���� ����� be the target points� Let ��j represent an estimator �OLS� IRLS� or

NLLS� of �j� and let ��j�r� �r � �� ���� ������� be the value of ��j computed from the rth data

set� We take the �true MSE of ��j to be the quantity

MSE �
�

�����

�



X
r��

���j�r�� �j�
�� ����

For each data set r� we computed the nominal MSE of ��j� We denote these quantities by

NMSEj�r� �r � �� ���� ������� The performance of the nominal MSE at any given point j

��



can be assessed through the quantity NMSEj �
P�





r�� NMSEj�r��������

The column labeled �RMSE in Table � presents the quantity
qP�




j�� MSEj for each of the

three estimators� The column labeled �Nominal RMSE presents the quantityqP�



j�� NMSEj for each of the three estimators� The column labeled �Coverage

Probability presents the proportion of nominal 	�� con�dence regions� taken over all data

sets and target points� that covered the true value�

Table � shows clearly that in this example� the NLLS estimator is best in terms of RMSE�

followed by the IRLS and OLS estimators� In fact� the NLLS estimator had smaller mean

squared error for each of the ���� target points than did either of the linear estimators�

TBCC hoped to develop a method that would enable the three coordinates of positions to

be estimated within a tolerance of �ve feet� Table � shows that the NLLS method achieved

this goal in terms of MSE� Comparing the �rst and second columns of Table � shows that

the nominal mean squared error is on the average quite close to the true value for the OLS

and NLLS estimators� but is biased severely upward for the IRLS estimator� The true

coverage probabilities were close to the nominal 	�� level for all three estimators� Since

the nominal MSE is biased slightly downward for the OLS and NLLS estimators � the

coverage probabilities are slightly low� For the IRLS estimator� the nominal MSE is biased

severely upward� yet the average coverage probability is only slightly high� This is due

partly to the fact that the coverage probability is bounded above by �� so no point can

have true coverage much greater than the nominal 	�� level� and partly to the fact that

there were a few target points for which the true coverage probability was quite low�

Table � summarizes the performances of the estimators over all ���� target points� To

describe how the behavior of the estimators varied over the points� we present some plots�

Figure � presents a scatterplot of quantities
q
MSEj for the IRLS estimator vs� the

��



corresponding quantities for the OLS estimator� The IRLS estimator outperforms the OLS

estimator at each of the ���� target points� Figure � presents the equivalent comparison of

the NLLS estimator with the IRLS estimator� The NLLS estimator outperforms the IRLS

estimator at each of the ���� target points�

Figures �� �� and 
 present histograms of the true coverage probability for the nominal 	��

con�dence regions for the OLS� IRLS� and NLLS procedures� respectively� The area under

a given region of a histogram indicates the proportion of the ���� target points whose true

coverage probabilities fell in that region� The true coverage probabilities for the OLS and

NLLS estimators are concentrated slightly below the nominal 	�� value� For the IRLS

estimator� most of the target points had coverage probabilities well above 	��� while a few

had values well below�

The NLLS method provided the most accurate results of all methods developed and

examined� The NLLS method performed least well at target points near the top of the

mine� where the distances between target points and beacons were very small in the

z�direction compared to the distances in the x� and y�directions� Still� the NLLS method

outperformed the linear methods even at the top of the mine�

� Numerical Methods and Implementation

Minimizing the sum of the square errors is a common problem in applied mathematics for

which various algorithms �McKeown �	��� as well as software packages are available�

Numerous approaches can be taken� from simple to very complicated �Mikhail �	���� For

the linear problems� we used Gauss�Jordan elimination �Press� et al�� �		�� to solve the

normal equations� This approach is generally inecient� but was feasible because the

��



dimensions of the problems were small� For the non�linear least squares minimization� we

used NAG subroutine E��KAF �NAG� �		��� a quasi�Newton algorithm that requires

calculation of the �rst derivatives of the objective function� Another iterative procedure for

computing the NLLS estimate was discussed in Laurila ��	
�� pp� �
��

��

We also implemented our own algorithms for this problem in Borland C��� We only

considered the case for which Fmin 	 �� corresponding to n 	 �� We used Newton iteration

to �nd the NLLS estimator �� � ��x� �y� �z� which minimizes

F ��� � F �x� y� z� �
nX

i��

fi�x� y� z�
�� ����

where

fi�x� y� z� � fi��� � di���� ri �
q
�xi � x�� � �yi � y�� � �zi � z�� � ri� ����

The function F ��� was de�ned in ����� and n is the number of beacons�

Di�erentiating ���� with respect to x yields


F ���


x
� �

nX
i��

fi

fi���


x
� �

nX
i��

fi

di���


x
� ����

The formulae for the partials with respect to y and z are similar� Recall that J��� is the

n� � matrix given by ����� Furthermore�

f��� �

�
BBBB	
f����
f����
���

fn���



CCCCA � rF ��� �

�
BBBBBB	

�F ���
�x

�F ���
�y

�F ���
�z



CCCCCCA
� J���T f��� �

�
BBBBBB	

Pn
i��

�x�xi�fi���
di���

Pn
i��

�y�yi�fi���
di���

Pn
i��

�z�zi�fi���
di���



CCCCCCA
� ����

We must solve

rF ��� � �J���T f��� � �� ����

��



Newton�s method applied to ���� leads to the iteration procedure�

�fk��g � �fkg � �J��fkg�
T
J��fkg��

��
J��fkg�

T
f��fkg�� ����

where �fkg denotes the kth estimate to the position vector � � �x� y� z�T � The explicit

expression for J���TJ��� was given in ��	�� A reasonably accurate initial guess� �f�g� for ��

is the OLS estimate given in �	�� Starting with �f�g� the least squares ���� is iterated until

the change in the estimate� �fk��g � �fkg� is suciently small�

In practice this type of iteration works fast� in particular when the matrix J��fkg�
T
J��fkg�

is augmented by a diagonal matrix which e�ectively biases the search direction towards

that of steepest decent� Levenberg and Marquardt �Lawson and Hanson� �	��� developed

this improvement�

� Discussion

��� Comparison of Linear and Non�linear Estimators

To gain insight into the superior performance of the NLLS estimator� recall that � denotes

the target point� and that Bi denotes the location of the beacon at which the ith

measurement was taken� Let �B � �
n

Pn
i��Bi�

The asymptotic covariance matrix of the NLLS estimate is ���J���TJ������� We compare

this with the theoretically best covariance matrix �XT
��

��
X��

�� for a linear estimator�

Recall that � is the diagonal matrix with elements given by ���� and X� is the design

matrix given by the rightmost three columns of ����

We can write

���J���TJ������ � ��
�

nX
i��

�Bi � ���Bi � ��T

di���
�

���
� ����

�




and using the approximation �ii � �di���
����

�XT
��

��
X��

�� � ��
�

nX
i��

�Bi � �B��Bi � �B�T

di���
�

���
� ��
�

Consider the di�erence between the inverses of these matrices�

J���TJ������ �X
T
��

��
X� �

�

��

nX
i��

�
�Bi � ���Bi � ��T � �Bi � �B��Bi � �B�T

di���
�

�
� ��	�

The quantity in the brackets is easily shown to be positive de�nite� Therefore� if the di���

were identical� the asymptotic variance of any linear combination of the components of the

NLLS estimator would be smaller than the variance of the corresponding linear estimator�

Since the di��� are not identical� the NLLS estimator can be improved upon� in theory� at

some target points� Of the ���� target points used in our simulation� there were four points

for which the trace of the matrix �XT
��

��
X��

�� was less than the trace of ���J���TJ�������

These points were all at the top of the grid� where the target z value was close to the

z�coordinates zi for the beacons� At these points� a linear estimator could in theory be

constructed that would outperform the non�linear estimator� Our simulation study showed

that in fact the non�linear procedure outperformed both the OLS and the IRLS estimators

at every one of the target points� This shows that neither of the linear estimators had a

covariance matrix suciently close to the optimal linear covariance matrix�

��� Alternative Models for Measurement Error

In some situations� it might be reasonable to assume that the magnitude of measurement

errors tend to be proportional to the true distance being measured� In this case we would

assume that Var ��i� � ��di���
��

It is not clear whether a reasonable linear estimator can be constructed in this case� The

expectation of the quantity Yi de�ned in ��� depends on the products of the coordinates of

�	



the target point � with ��� so it cannot be used as the dependent variable in a linear model

unless the value of �� is known�

It is easy� however� to construct non�linear estimators� The most obvious approach might

be to minimize the sum of squares

G��� �
nX

i��

�
ri � di���

di���

��
� ����

The estimator obtained by this approach is asymptotically normal� and it is possible to

derive the asymptotic covariance matrix in the usual way� by computing the one�term

Taylor series expansion of the gradient of G���� The asymptotic covariance of this

estimator is somewhat intractable� however� and involves third and fourth order moments

of the �i� for which accurate estimation may not be possible�

The better approach in this situation is the quasi�likelihood approach� The appropriate

quasi�likelihood estimator is found by minimizing

nX
i��

ri
di���

� log�di����� ����

See McCullagh and Nelder ��	
	� for a derivation� Let V denote the diagonal matrix

whose ith diagonal element is equal to di���
�� so that ��V is the covariance matrix of the

ri� Then the asymptotic covariance of the quasi maximum likelihood estimator �McCullagh

and Nelder� �	
	� is given by ���J���TV��
J������� where J��� is given by �����

��� Optimal Beacon Placement

The accuracy of trilateration estimates of position is in�uenced by the location of the

beacons relative to the point whose coordinates are to be estimated� For example� with

eight beacons under the error model we discuss� the NLLS method would perform

��



optimally if the beacons were placed at the corners of a cube� with the point to be

estimated in the center� In practice� choices for beacon placement are likely to be limited

by topographical considerations� Further research dealing with optimal beacon placement

under realistic limitations of speci�c applications would be valuable�

��
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Figure �� Diagram of the Trilateration Problem�
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Figure �� Illustration of Fixed Beacon Locations�

Perspective view of the mine� To obtain the coordinates �in feet�� add ������� to x� ��������� to y� and

����� to z� Note that the vertical z� scale is exaggerated by a factor of approximately �	 relative to the

horizontal ones� i�e� the beacons lie very nearly in a plane� The coordinates x� y� and z of the beacons are in

the ranges 
�������������� 
�������� �������� and 
���������� respectively�

��



Figure �� Illustration of Test Grid�

Bird�s eye view of the mine� The North� South� East and West boundaries correspond to the extreme

positions of the beacons� The top of the grid is 	 feet below the lowest beacon� The coordinates x� y� and z

of the target point are in the ranges 
�������������� 
�������� �������� and 
���	����	�� respectively�
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Table �� Coordinates of Fixed Radio Beacon Positions�

Beacon Number x y z
� ������ ��	���� ����
� �
���� ��	�	�� ��	�
� �
���� ��

��� �
��
� ��
��� ��
�
�� ����
� ������ ��

�
� ����
� ��
��� ��	���� �
��
� ������ ��	�	
� ����

 ��
��� ��	���� ����

Coordinates are measured from an arbitrary reference point in Western Wyoming� Units are feet�

��



Table 	� Comparison of methods of estimation�

Estimator RMSE Nominal RMSE Coverage Probability
OLS ����� ����� ��	��	
IRLS �
��
 ����	� ��	���
NLLS ��	� ���
 ��	���

Units are feet�
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