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Abstract

Trilateration techniques use distance measurements to survey the spatial coordinates of
unknown positions. In practice, distances are measured with error, and statistical methods
can quantify the uncertainty in the estimate of the unknown location. Three methods for
estimating the three-dimensional position of a point via trilateration are presented: a linear
least squares estimator, an iteratively reweighted least squares estimator, and a nonlinear
least squares technique. In general, the nonlinear least squares technique performs best,
but in some situations a linear estimator could in theory be constructed that would

outperform it.

By eliminating the need to measure angles, trilateration facilitates the implementation of
fully automated real-time positioning systems similar to the global positioning system
(GPS). The methods presented in this paper are tested in the context of a realistic
positioning problem that was posed by the Thunder Basin Coal Company in Wright,

Wyoming.

1 Introduction

Thunder Basin Coal Company (TBCC), based in Wright, Wyoming, wished to develop a
fully automated surveying system to accurately determine the three-dimensional position of
equipment in an open pit mine. Standard surveying techniques are based on measurement
of angles and a baseline distance to determine the unknown position components (the
latitude z, the longitude y, and the altitude z) of a point relative to a fixed coordinate
system. Such triangulation methods are laborious, expensive and slow. The advent of

accurate electronic distance measuring equipment and high speed computers enables



surveyors to replace angular measurements with distance measurements by using the

trilateration surveying technique (Laurila 1983; Moffitt and Bouchard, 1992; Savidge 1980).

Several advanced and widely used positioning systems were considered for TBCC’s
problem, in particular, the Global Positioning System (GPS) (Leick, 1990; Parkinson and
Spilker, 1996). However, TBCC determined that with GPS as it is available to the civil
community, the vertical position accuracy is insufficient. Accurate elevations are key in
mining applications. For example, in dynamic blasting, where the soil atop of the coal is
removed via controlled explosions, both accurate positioning of the drill and precise

measurement of the depth of the bore-hole are essential.

As an alternative to GPS, the engineers at TBCC proposed placing a system of radio
beacons at known locations on the rim of the mine. The coordinates of the beacons would
be carefully determined with conventional surveying methods to nearly perfect accuracy.
To determine the position of a piece of equipment in the mine, each beacon would transmit
a radio signal to the target point, then receive its reflection. The distance between a
beacon and the target point can be computed as a function of the measured time between
transmission and reception. The spatial coordinates of the target point would then
computed from the measured distances to the various beacons. An experimental setup was

put into place at TBCC in 1993. A diagram of this setup is presented in Figure 1.

Electronic systems and electro-optical instruments for distance measurements are fairly
accurate, but measurement error needs to be taken into account. TBCC estimated that the
magnitude of a typical error on the distance from the beacon to the target point would be
about 0.5 feet. Because of this, there will generally be no point in space whose actual
distances to the known beacons correspond to the measured ones, so methods based on

exact distances will fail to yield a solution.



Various deterministic procedures have been proposed for approximating the coordinates of
the target point (Danial and Krauthammer, 1980; Laurila 1983; Mezera, 1983; Moffitt and
Bouchard, 1992). A statistical approach that takes measurement error into account can

produce estimates for the coordinates of the target point along with a confidence region for

its position.

In principle, many repeated measurements could be made from each beacon. It is possible
that such a sequence would exhibit some degree of autocorrelation. The methods described
here assume that all measurements are independent. This could certainly be achieved by
taking only one measurement per beacon, and we adopt this conservative approach in our
simulation studies. If sequences of nearly independent measurements can be obtained from

each beacon, the accuracy of the methods we describe would be considerably enhanced.

The usefulness of statistical methods for the three-dimensional trilateration positioning
problem is not restricted to mining applications that use radio signals to measure distances.
Our algorithms can be utilized in any system that involves distance measurements obtained
with radar, lasers, or manual measurement. Indeed, there are numerous real-world
applications where triangulation methods for determining positions in a timely, accurate,
and cost effective manner are out of the question. Trilateration methods are the most
appropriate in a variety of circumstances that involve aircraft, land vehicle, marine vessel,
and spacecraft navigation (Leick, 1990; Parkinson and Spilker, 1996). New and innovative
applications of high-precision trilateration include dredging operations, precision farming,
underwater positioning, precision landing of aircraft, vehicle tracking systems, construction
related surveying inside large building shells, monitoring of distortion of large objects such

as dams and bridges, robotics applications, guidance systems for smart weapons.

In this paper we present three statistical approaches to the trilateration problem, together



with detailed comparisons of their performance. The paper is organized as follows. In
section 2 we present two linear least squares procedures. The first involves an exact
linearization of the problem, and estimation by ordinary least squares (OLS). The second
method uses iteratively reweighted least squares (IRLS) in an effort to improve on the OLS
estimator. In section 3, we turn to the full non-linear problem and treat it with a
non-linear least squares (NLLS) technique. In section 4 we compare the accuracy of the
procedures with a Monte-Carlo simulation using actual beacon locations from TBCC. In
section 5 we describe existing software for NLLS estimators as well as our own

implementation. In section 6 we discuss our results and present conclusions.

The statistical methods we present are for the most part familiar least-squares procedures.
To obtain a linear least-squares model for trilateration, we developed a new method of
exact linearization. Non-linear least squares models have been discussed by Wolf and
Ghilani (1997). We show how these results can be extended to unequal variance situations,

using the theory of quasi-likelihood estimation.

2 Linear Least-Squares

2.1 Constructing a Linear Model

With reference to Figure 1, let n denote the total number of measurements taken at all
beacons combined. Let 6§ = (z,y, z) denote the spatial coordinates of the target point. Let
B; = (z;,y;, z;) be the exact location of the beacon at which the ith measurement is taken.

Define




the true distance from the ith beacon to the target point. In order to ensure identifiability,
we assume that there are enough beacons so that if @ # @', then there is at least one i for
which d;(0) # d;(0"). Let r; be the measured distance from the ith beacon to the target
point. We assume that r; = d;(#) + £;, where the ¢; are independent, with E(s;) = 0 and
Var(g;) = o2, We discuss alternative assumptions on the variance in section 6.2. Notice

that we do not make any distributional assumptions, such as normality, on &;.

The regression equations

di(0) = BE(ri|x,y, 2) = \/(x =22+ (y —vi)? + (2 — 2)?

are non-linear in the unknowns x, y, z, but a linear regression equation can be developed as
shown below. Alternate methods of linearization have been proposed by Laurila (1983),

and Parkinson and Spilker (1996).

Let (z,,,, 2,) be the coordinates of any point in R?, which we will refer to as the reference

point. Now for each of the n points (z;,y;, 2;), write
dz(g)Z = ($ — Ty + Tp — xi)z + (y —Yr +Yr — yi)2 + (Z — 2+ 2 — Zi)z- (1)

Let

dip = /(w5 = 2)? + (5 — )2 + (5 — )%,
the distance between the reference point and the location of the beacon at which the ith

measurement was taken. Let

do(0) = /(@ — )2+ (y — 9,)2 + (2 — 2)2,

the distance between the reference point and the target point (z,y, z). Expanding and

regrouping terms in (1), we obtain

20(x — @) (@i — @) + (y —y) (i — 9) + (2 = 2) (5 — 2)] = 4. (0) + die® — di(0)°. (2)
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Define the matrix
1 2(xy— ) 21 —yr) 2(z1 — 2)
1 2(xe — ) 2(y2 —vyr) 2(29 — 2
1 2(zn — ) 2(yn —yr) 2(2n — 2r)

Define the parameter vector

—d,(0)* — o
T —x
— r 4
B -~ (4)
z— 2z
Define
Yi = diy” — i, (5)

and let Y denote the vector whose ith component is Y;. Since the d;,? are known constants,

and since E(r;2|z,y, 2) = d;(0)* + 02, it follows that E(Y;) = d;,* — d;(0)* — 0, so that
E(Y) = X5. (6)
The Y; are independent, and
Var(Y;) = Var(r;2) = Var([d; () +¢,]?) = Var(2d;(0)e;+£:2) = 4d;(0) >0 +4d; (0) pis+pa—0*, (7)

where 02, i3, and py are the second, third, and fourth moments of the distribution of the ;.

The first component of 5 contains a non-linear function of the components of 8 = (z,y, 2),
so it appears that this is not a linear regression. For now, we ignore the functional
dependence, and treat the first component as a free parameter. It will be shown in Section

2.2 that this does not affect the estimation of 6.

We describe below a linear regression model that produces the OLS estimator of §. Since
the variances of the Y; are not identical, this estimator is not necessarily optimal. In
principle, one can attempt to improve on the performance of the OLS estimator with an
IRLS regression, in which the variances of the Y; are estimated along with 6 in an iterative

fashion. We discuss this possibility in Section 2.3.
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2.2 The Ordinary Least Squares Estimator

To make the regression equation (6) linear in the unknowns x, y, z, note that the span of
the columns of X does not depend on the choice of the reference point. Therefore the value
of XB does not depend on the reference point, and it follows easily that the values of the
estimates , y, and Z do not depend on the choice of the reference point. This suggests
using the value = (7,7, 2) as the reference point. This choice makes the rightmost three
columns of X orthogonal to the column of ones, allowing it and the first component of (4)

to be dropped from the model without affecting the estimation of 8 = (z,y, ).

Define X, to be the matrix consisting of the rightmost three columns of (3), and
Y. =Y +X.,0. Then
E(Y.) = X.0, (8)
and the OLS estimator of 8 is
f = (XTX,) 'XTY,. (9)

Equation (8) guarantees that § will be unbiased, with covariance matrix
Cov(0) = (XTX,)"'XTeX,(XTX,)™!, (10)

where 3 is the diagonal matrix whose ith diagonal element is Var(Y;), given by (7). The
elements of X, depend only on the known locations of the beacons, and the elements of 3
depend on the distances from the target point to the beacons. Thus for fixed beacon
positions, the variances of the estimates of the coordinates of the target point will increase

as the distances from the target point to the beacons increase.

Since X is unknown, we cannot use (10) to compute Cov(f). Instead, we can compute the

conventional OLS estimate of Cov(0) as follows. We first compute the residual mean square



s2. Since the design matrix X, has no intercept, it is necessary to regress it out separately

in computing s2. Thus s? is given by

s = Y Yi—-Y -V~ (11)
Here Y = X*é

Now we can compute the conventional OLS estimate of Cov(0), which is s2(X7X,)~". The
trace of this matrix estimates the mean squared error (MSE) of 9, which is the expected

squared distance from the target point to its estimate. Thus
MSE(0) = Trace[s*(X”X,)™!]. (12)

We can also compute the conventional 95% confidence ellipsoid for the true value

6 = (x,y, z). This is the set
S={01(0—0)"(sXIX,)(0—0) <3Fs ns o5}, (13)

where F3 ,,_4 o5 is the 95th percentile of the F5 ,,_4 distribution.

2.3 Iteratively Reweighted Least Squares

Since the variances of the Y; are unequal, the OLS estimator may be improved upon. The
variances of the Y; compose the elements of the diagonal matrix 3. If these variances were

known, then the best linear estimator of # would be given by
By = (XTS7X)'XTEY, (14)

with covariance matrix

Cov(B,,) = (XTZ1X) L, (15)

opt



The best linear estimate éopt of # consists of the last three components of B Since the

opt*

elements of 3 are unknown, we cannot compute 3 However, we can attempt to

opt*
approximate it by IRLS. To perform this method, we initialize an estimate 3 to the
identity matrix I, and compute 3 by (14). We then use the elements of 3 to update the

estimate fl, and recompute B This process is iterated to convergence.

In principle, it is possible to compute the IRLS estimate 0 from a truly linear model, as in
the case of the OLS estimator. Let f)n be the estimate of 3 after n iterations. For the
n + 1st iteration, define the reference point 6, by

_ S, Bif6;

?:1 1/@ ’

0

where B; = (x;, y;, #;) are the coordinates of the beacon from which the ith measurement
was taken, and g; is the square root of the ith diagonal element of 3%,. Then the first
column of the matrix 271/2X is orthogonal to the other three, so it can be dropped from
the model, along with the first component of (4). In practice, this recomputation of the
reference point and the matrix X at each iteration is unnecessary. Identical results will be
obtained by using the full design matrix (3), and estimating 3 at each iteration. Upon

convergence the last three components of B form the IRLS estimator of 6.

~

To update the estimate 3, we express the ith diagonal element of 3 in terms of the
moments of the ¢;:

Y = 4d;(0)°0® + 4d;(0) s + pa — 0. (16)

Let the components of 6 be denoted by (#,9,2). These components are used to estimate
each of the quantities on the right side of (16). Specifically, d;(6) is estimated with d;(6),
the distance from the beacon at which the ith measurement was made to the point 0. The

moments 02, 3, (14 can be expressed in terms of the d;(#) and the moments of the r;. For
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each measurement ¢, we have

o> = E(r?) - di(0)", (17)
ps = E(r?) —d;(0)* — 30%d;(0), (18)
pe = B(r") —d;(0)" — 60%d;(0)* — 4p3d;(0). (19)

5t = lZTz’Z_dz(G)v (20)
L)

fis = erﬁ—di(é)g—?)&Zdi(é), (21)
NGz

X I & 4 N 662d.(0)° — 473d (0

fia = an —di(0) —657d;(0) — 41°d;(0). (22)

@
Il
—

When the sample size is small, it turns out that if all the moment estimators are used
in (16), the IRLS procedure is quite unstable, and frequently fails to converge. An
approximate method, that is considerably more stable, is obtained by ignoring moments

higher than the second. Thus we approximate

and estimate o2 by (20). The justification for this approximation is that the moments of
the measurement error should be much less than the true distance. Thus the right hand

side of (16) is dominated by its first term.

After convergence, the covariance matrix of 6 is estimated with (XfiilX*)*l. By analogy

with (12) and (13), we estimate the MSE of 6 with
MSE(f) = Trace[X"$-1X,] Y, (24)

and the nominal 95% confidence region is given by
S=1{0]0—-0)TXTS'X, (0 —0) <3Fs 4 o5} (25)
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3 Non-linear Least-Squares

The OLS estimate minimizes the quantity Y7 [di> — 72 — d;(0)*]2. A simpler sum of
squares is given by
n n

FO) =S Iri — di(0)? = Z(r,- — @ =2+ i -y + (- z)2>2. (26)

=1 =1

The NLLS estimator § of # is the minimizer of F. The function F(f) is a quasi-likelihood

function (McCullagh and Nelder, 1989).

If we define J(6) to be the n x 3 matrix

8di(9)  0di(0)  9dy(0)

ox oy 0z
9d2(0) 9d>(6) 9d2(0)
or oy 0z
J(0) = : (27)

ddn (0) 0dn (0) ddr (0)
ox oy 0z

it then follows from McCullagh and Nelder (1989, pp. 327-328), that 0 is asymptotically

normal and unbiased, with asymptotic covariance matrix o[J(8)"J(6)]~".

In practice, o2 is estimated with

1
n—3

n ~

> [ri — di(0)P,
i=1

and the asymptotic covariance matrix is estimated with

Cov(B) = 62[3(0)T3(H)] . (28)

12



Denoting the components of # by (z, y, z), the matrix J(0)7J(6) can be written as

n  (z—w;)’ n (z—xi)(y—y:) n  (z—xi)(2—2i)
=1 d;(0)° =L di(0)° =1 d(0)?
;) (y—y; —yi)® —yi)(z—2i
JOTIO) = | DL e wr b w o) | ()
n (z—x;)(2—2) n (y=yi)(z—2) n  (2—z)?
=1 di0)® = di(0)? =1 d;(0)

The diagonal elements of J(#)TJ(6) can be described as follows. For each beacon, the
squared distance between the target point and the beacon is divided into the squared
distance between the z-coordinates (or the y- or z-coordinates). Then the quantities are
summed across beacons. Since the asymptotic covariance of 0 is proportional to the inverse
of J(0)TJ(9), it follows that the NLLS estimator will have smaller MSE when the z, y, and
z components of the distances from the target point to the beacons are approximately
equal, and larger MSE for target points one of whose coordinates is substantially closer to

the beacons than the other coordinates are.

This phenomenon can be seen most clearly in the situation where the beacons are placed
orthogonally to one another, so that the off diagonal elements of J(6)TJ(0) are equal to 0.

Then the asymptotic variances of the estimates of the x, y, and z coordinates of the target

J2q-1 21—l 21—l ,
point are given by [ " (Z;(f;‘;g?] : [ n (Zi(g;f} , and [ n (di(03)22:| , Tespectively,

where d;(0)* = (z; — 2)* + (y; — y)* + (2 — 2)*
4 Simulation Results

Analytic calculations provide asymptotic estimates of variance, which are approximations
to the true variances for finite samples. In order to assess the accuracy of the asymptotic
variance estimates, and to compare the performance of the various methods, simulation

studies are needed. We performed several simulation studies, based on information and
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data provided by TBCC. They suggested that eight fixed-position radio beacons would be
feasible in terms of cost. The beacons By, ..., Bg are installed on the rim of the mine, and
their actual locations are determined primarily by topographic considerations. We used the
locations suggested by TBCC, which are shown in Table 1. The coordinates given for each
of the eight beacons are accurate distances in feet with respect to a fixed reference point in
western Wyoming that was chosen by TBCC. Figure 2 presents a perspective view of the

eight beacons.

To study the ways in which the performance of the estimates varies with the location of the
target point, we considered 1000 target points, located in a rectangular grid. Figure 3 shows
the grid of 1000 target points. For each of the 1000 target points, we constructed 10000
data sets. Each data set consisted of one measurement from each beacon. To simulate the
conditions anticipated in TBCC’s mine, the measurements were generated by adding to the

true distance a random error from a uniform distribution on the interval (—0.5,0.5).

For each data set, we computed the OLS estimate (9), the nominal estimate of its MSE in
(12), the IRLS estimate, the nominal estimate of its MSE in (24), the NLLS estimate, and

the nominal estimate of its MSE in (28).

In Table 2 we present the results. To explain the entries in that table, let
0; (j =1,...,1000) be the target points. Let éj represent an estimator (OLS, IRLS, or
NLLS) of 6;, and let 6;(r) (r = 1, ...,10000), be the value of #; computed from the rth data
set. We take the “true” MSE of éj to be the quantity

1 10000

MSE = —— S [0,(r) — 0]
SE = 10000 Til[g(r) il (30)

For each data set r, we computed the nominal MSE of éj. We denote these quantities by

NMSE;(r) (r =1, ...,10000). The performance of the nominal MSE at any given point j

14



can be assessed through the quantity NMSE; = > 127° NMSE; () /10000.

The column labeled “RMSE” in Table 2 presents the quantity \/m for each of the
three estimators. The column labeled “Nominal RMSE” presents the quantity
\/W for each of the three estimators. The column labeled “Coverage
Probability” presents the proportion of nominal 95% confidence regions, taken over all data

sets and target points, that covered the true value.

Table 2 shows clearly that in this example, the NLLS estimator is best in terms of RMSE,
followed by the IRLS and OLS estimators. In fact, the NLLS estimator had smaller mean
squared error for each of the 1000 target points than did either of the linear estimators.
TBCC hoped to develop a method that would enable the three coordinates of positions to
be estimated within a tolerance of five feet. Table 2 shows that the NLLS method achieved
this goal in terms of MSE. Comparing the first and second columns of Table 2 shows that
the nominal mean squared error is on the average quite close to the true value for the OLS
and NLLS estimators, but is biased severely upward for the IRLS estimator. The true
coverage probabilities were close to the nominal 95% level for all three estimators. Since
the nominal MSE is biased slightly downward for the OLS and NLLS estimators , the
coverage probabilities are slightly low. For the IRLS estimator, the nominal MSE is biased
severely upward, yet the average coverage probability is only slightly high. This is due
partly to the fact that the coverage probability is bounded above by 1, so no point can
have true coverage much greater than the nominal 95% level, and partly to the fact that

there were a few target points for which the true coverage probability was quite low.

Table 2 summarizes the performances of the estimators over all 1000 target points. To
describe how the behavior of the estimators varied over the points, we present some plots.

Figure 4 presents a scatterplot of quantities /MSE; for the IRLS estimator vs. the

15



corresponding quantities for the OLS estimator. The IRLS estimator outperforms the OLS
estimator at each of the 1000 target points. Figure 5 presents the equivalent comparison of
the NLLS estimator with the IRLS estimator. The NLLS estimator outperforms the IRLS

estimator at each of the 1000 target points.

Figures 6, 7, and 8 present histograms of the true coverage probability for the nominal 95%
confidence regions for the OLS, IRLS, and NLLS procedures, respectively. The area under
a given region of a histogram indicates the proportion of the 1000 target points whose true
coverage probabilities fell in that region. The true coverage probabilities for the OLS and
NLLS estimators are concentrated slightly below the nominal 95% value. For the IRLS
estimator, most of the target points had coverage probabilities well above 95%, while a few

had values well below.

The NLLS method provided the most accurate results of all methods developed and
examined. The NLLS method performed least well at target points near the top of the
mine, where the distances between target points and beacons were very small in the
z-direction compared to the distances in the - and y-directions. Still, the NLLS method

outperformed the linear methods even at the top of the mine.

5 Numerical Methods and Implementation

Minimizing the sum of the square errors is a common problem in applied mathematics for
which various algorithms (McKeown 1975) as well as software packages are available.
Numerous approaches can be taken, from simple to very complicated (Mikhail 1976). For
the linear problems, we used Gauss-Jordan elimination (Press, et al., 1992) to solve the

normal equations. This approach is generally inefficient, but was feasible because the
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dimensions of the problems were small. For the non-linear least squares minimization, we
used NAG subroutine EO4KAF (NAG, 1991), a quasi-Newton algorithm that requires
calculation of the first derivatives of the objective function. Another iterative procedure for

computing the NLLS estimate was discussed in Laurila (1983, pp. 187-88).

We also implemented our own algorithms for this problem in Borland C++. We only
considered the case for which Fj,;, > 0, corresponding to n > 3. We used Newton iteration
to find the NLLS estimator § = (&, 9, 2) which minimizes

n

F0)=F(x,y,z) = ;fi(x,y, 2)2, (31)
where
filw,y,2) = f:(0) = di(0) —ri = /(3 — 2)2+ (s — ) + (2 — 2)2 — 1. (32)

The function F(#) was defined in (26), and n is the number of beacons.

Differentiating (31) with respect to z yields

OF (0

) OA(0) 3 0di(6)
o =23

=23 fi—3 = (33)

=1

(0
Oz
The formulae for the partials with respect to y and z are similar. Recall that J(#) is the

n X 3 matrix given by (27). Furthermore,

£7(0) agie) " (x_;i(aj;i(a)
w0 = | M| wro = | 2o | seree - | s e | ey
fa(6) o) n (z—;-() gf)z(G)
We must solve
VFE(0) =23(0)"£(h) = 0. (35)

17



Newton’s method applied to (35) leads to the iteration procedure:

Opirry = Opry — [I(0py)" I (O0p)] ' I (Opuy) £ By, (36)
where 03 denotes the kth estimate to the position vector 6 = [z, y, z]". The explicit
expression for J(0)"J(#) was given in (29). A reasonably accurate initial guess, 61y, for
is the OLS estimate given in (9). Starting with 6,3, the least squares (36) is iterated until

the change in the estimate, 0;1) — 04, is sufficiently small.

In practice this type of iteration works fast, in particular when the matrix J(G{k})TJ(G{k})
is augmented by a diagonal matrix which effectively biases the search direction towards
that of steepest decent. Levenberg and Marquardt (Lawson and Hanson, 1974) developed

this improvement.

6 Discussion

6.1 Comparison of Linear and Non-linear Estimators

To gain insight into the superior performance of the NLLS estimator, recall that # denotes
the target point, and that B; denotes the location of the beacon at which the ith

measurement was taken. Let B =1Y", B;.

The asymptotic covariance matrix of the NLLS estimate is o?[J(0)"J(0)]~'. We compare
this with the theoretically best covariance matrix (XZX1X,) ! for a linear estimator.
Recall that ¥ is the diagonal matrix with elements given by (7), and X, is the design

matrix given by the rightmost three columns of (3).

We can write

: (37)



and using the approximation ¥; = 4d;(0)°0?,

" (B;— B)(B; — B)T] "
(XT21X,)"! =02 l ( I . ) ] (38)
= d;(0)
Consider the difference between the inverses of these matrices:
1 & [(B,—0)(B;—)" — (B, — B)(B, — B)"
J(O)I0) /0> —XITT X, = < [( I ) y (9()2 I ) ] . (39)
) i

The quantity in the brackets is easily shown to be positive definite. Therefore, if the d;(6)
were identical, the asymptotic variance of any linear combination of the components of the
NLLS estimator would be smaller than the variance of the corresponding linear estimator.
Since the d;(#) are not identical, the NLLS estimator can be improved upon, in theory, at
some target points. Of the 1000 target points used in our simulation, there were four points
for which the trace of the matrix (XT3 'X,) ! was less than the trace of o[J(6)TJ(0)] .
These points were all at the top of the grid, where the target z value was close to the
z-coordinates z; for the beacons. At these points, a linear estimator could in theory be
constructed that would outperform the non-linear estimator. Our simulation study showed
that in fact the non-linear procedure outperformed both the OLS and the IRLS estimators
at every one of the target points. This shows that neither of the linear estimators had a

covariance matrix sufficiently close to the optimal linear covariance matrix.

6.2 Alternative Models for Measurement Error

In some situations, it might be reasonable to assume that the magnitude of measurement
errors tend to be proportional to the true distance being measured. In this case we would

assume that Var (g;) = o2d;(0)”.

It is not clear whether a reasonable linear estimator can be constructed in this case. The

expectation of the quantity Y; defined in (5) depends on the products of the coordinates of
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the target point # with o2, so it cannot be used as the dependent variable in a linear model

unless the value of o2 is known.

It is easy, however, to construct non-linear estimators. The most obvious approach might

be to minimize the sum of squares
n Ty — dy(6)]
- [T d )] . (40)
=1

The estimator obtained by this approach is asymptotically normal, and it is possible to
derive the asymptotic covariance matrix in the usual way, by computing the one-term
Taylor series expansion of the gradient of G(). The asymptotic covariance of this
estimator is somewhat intractable, however, and involves third and fourth order moments

of the ¢;, for which accurate estimation may not be possible.

The better approach in this situation is the quasi-likelihood approach. The appropriate

quasi-likelihood estimator is found by minimizing

— log[d;(0)]. (41)

See McCullagh and Nelder (1989) for a derivation. Let V denote the diagonal matrix
whose ith diagonal element is equal to d;(#)?, so that 62V is the covariance matrix of the

r;. Then the asymptotic covariance of the quasi maximum likelihood estimator (McCullagh

and Nelder, 1989) is given by o2[J(0)" V=13(0)]~", where J(0) is given by (27).
6.3 Optimal Beacon Placement

The accuracy of trilateration estimates of position is influenced by the location of the
beacons relative to the point whose coordinates are to be estimated. For example, with

eight beacons under the error model we discuss, the NLLS method would perform

20



optimally if the beacons were placed at the corners of a cube, with the point to be
estimated in the center. In practice, choices for beacon placement are likely to be limited
by topographical considerations. Further research dealing with optimal beacon placement

under realistic limitations of specific applications would be valuable.
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Figure 1: Diagram of the Trilateration Problem.
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Figure 2: Tllustration of Fixed Beacon Locations.

Perspective view of the mine. To obtain the coordinates (in feet), add 460,000 to z, 1,080,000 to y, and
4,600 to z. Note that the vertical z— scale is exaggerated by a factor of approximately 15 relative to the
horizontal ones, i.e. the beacons lie very nearly in a plane. The coordinates x,y, and z of the beacons are in
the ranges [467400,482230], [1087810, 1097340], and [4670,4831], respectively.
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Figure 3: Illustration of Test Grid.

Bird’s eye view of the mine. The North, South, East and West boundaries correspond to the extreme
positions of the beacons. The top of the grid is 5 feet below the lowest beacon. The coordinates x,y, and z
of the target point are in the ranges [467400,482230], [1087810, 1097340], and [4065,4665], respectively.
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OLS Root Mean Squared Error
Figure 4:
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IRLS Root Mean Squared Error
Figure 5:
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Table 1: Coordinates of Fixed Radio Beacon Positions.

Beacon Number x Y z

475060 1096300 4670
481500 1094900 4694
482230 1088430 4831
478050 1087810 4775
471430 1088580 4752
468720 1091240 4803
467400 1093980 4705
468730 1097340 4747

O~ O Ol W N+

Coordinates are measured from an arbitrary reference point in Western Wyoming. Units are feet.
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Table 2: Comparison of methods of estimation.

Estimator RMSE Nominal RMSE Coverage Probability

OLS 25.34 24.12 0.9409
IRLS 18.68 172.92 0.9613
NLLS 3.96 3.78 0.9434

Units are feet.
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