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We prove that the new Lax pair of the Sawada-Kotera equation, discovered recently by Hickman, Hereman, Larue, and Göktaş, and
the well-known old Lax pair of this equation, considered in the form of zero-curvature representations, are gauge equivalent to each
other if and only if the spectral parameter is nonzero, while for zero spectral parameter a nongauge transformation is required.

1. Introduction

Recently, the following interesting result was obtained by
Hickman et al. [1]. It turned out that the Sawada-Kotera
equation [2, 3]
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possesses two different Lax representations in the operator
form

𝐿𝜓 = 𝜆𝜓, 𝜓
𝑡
= 𝑀𝜓, (2)

where subscripts of the scalar functions 𝑢 and 𝜓 denote
respective derivatives, 𝐿 and 𝑀 are linear differential oper-
ators expressed in powers of the derivative operator 𝐷

𝑥
, and

𝜆 is the spectral parameter. The first Lax pair, given by the
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is well known [4, 5]. The second Lax pair, given by the
operators

𝐿
2
= 𝐷
3

𝑥
+ 𝑢𝐷
𝑥
+ 𝑢
𝑥
,

𝑀
2
= 9𝐷
5

𝑥
+ 15𝑢𝐷

3

𝑥
+ 30𝑢

𝑥
𝐷
2

𝑥

+ (5𝑢
2
+ 25𝑢

𝑥𝑥
)𝐷
𝑥
+ (10𝑢𝑢

𝑥
+ 10𝑢

𝑥𝑥𝑥
) ,

(4)

is new, in the sense that it appeared in [1] for the first time in
the literature.

Many experts, according to their private communica-
tions, noticed that the second Lax pair (4) is related to the
first Lax pair (3) by the transformation

𝐿
2
= −𝐿
1

†
, 𝑀

2
= −𝑀

1

†
, (5)

where the dagger denotes the Hermitian conjugate. This
transformation (5) always turns a Lax pair of an integrable
equation into a Lax pair of the same equation, but usually the
resulting Lax pair has essentially the same form as the original
one (we believe that for this reason no second Lax pair was
discovered in [1] for the Kaup-Kupershmidt equation, in
particular). Let us note, however, that the Lax pairs (3) and
(4) are different in form. Some other experts, also according
to their private communications, noticed that the old Lax
pair (3) and the new one (4) are related to each other by the
transformation
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which corresponds to the transformation 𝜓 󳨃→ 𝜓
𝑥
made in

(2). Thus, there exist (at least) two different ways to relate
the Lax pairs (3) and (4) to each other, and we believe that
this point deserves further investigation using more general
description of Lax pairs than their operator form.

In the present paper, we study these two Lax pairs of the
Sawada-Kotera equation (1)—the old one, (2) with (3), and
the new one, (2) with (4)—in the matrix form

Φ
𝑥
= 𝑋Φ, Φ

𝑡
= 𝑇Φ, (7)
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or, what is the same, in the form of zero-curvature represen-
tations (ZCRs)

𝐷
𝑡
𝑋 − 𝐷

𝑥
𝑇 + [𝑋, 𝑇] = 0, (8)

where Φ(𝑥, 𝑡) is a three-component column vector, 𝑋 and 𝑇
are 3 × 3matrices, and the square brackets denote thematrix
commutator. In Section 2, we show that, for any nonzero
value of the spectral parameter, the new Lax pair of the
Sawada-Kotera equation and the old one are related to each
other by a gauge transformation of ZCRs

Φ 󳨃󳨀→ 𝐺Φ, det𝐺 ̸= 0,

𝑋 󳨃󳨀→ 𝐺𝑋𝐺
−1
+ (𝐷
𝑥
𝐺)𝐺
−1
,

𝑇 󳨃󳨀→ 𝐺𝑇𝐺
−1
+ (𝐷
𝑡
𝐺)𝐺
−1
,

(9)

where 𝐺 is a 3 × 3 matrix. In Section 3, we show that,
for any value of the spectral parameter including zero, the
new Lax pair and the old one are related to each other by a
gauge transformation (9) combined with a different type of
equivalence transformations of ZCRs (8); namely,

𝑋 󳨃󳨀→ −𝑋, 𝑇 󳨃󳨀→ −
̃
𝑇, (10)

where the tilde denotes the matrix transpose. Section 4
contains concluding remarks.

We use computationally effective techniques, such as the
method of gauge-invariant description of ZCRs, developed in
[6, 7] independently, and the method of cyclic bases of ZCRs
[7, 8], and follow the terminology and notations adopted in
[8].

2. Nonzero Spectral Parameter

Introducing the three-component column vector

Φ = (

𝜓

𝜓
𝑥

𝜓
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) , (11)

we can rewrite the Lax pairs (2) with the operators (3)
and (4) in their matrix form (7). The old Lax pair of the
Sawada-Kotera equation, determined by the operators (3),
corresponds to the ZCR (8) with the matrices
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where 𝜆 denotes the spectral parameter, and

V = 𝑢
𝑥𝑥𝑥

+ 𝑢𝑢
𝑥
. (13)

The new Lax pair of the Sawada-Kotera equation, (2) with (4),
corresponds to the ZCR (8) with the matrices
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where 𝜇 stands for the spectral parameter, V is given by (13),
and
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We have changed the notation for the spectral parameter in
(14) because no relation between the parameters of (12) and
(14) is assumed initially.

Let us compute the cyclic bases [7, 8] of the ZCRs (8)
with the matrices (12) and (14), in order to see if there are any
obstacles to relate these two ZCRs by a gauge transformation
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For the matrix 𝑋
1

given by (12) with a nonzero
spectral parameter 𝜆 ̸= 0, we find that the cyclic
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has the following coefficients in this case:
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where V is given by (13).
For the matrix𝑋

1
(12) with 𝜆 = 0, we get quite a different

situation. In this case, the dimension of the cyclic basis is five,
not eight. The closure equation
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For the matrix𝑋
2
(14), which contains 𝑢

𝑥
, the character-

istic matrix 𝐶
2
is computed in the following, more general,

way:
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where the covariant derivative ∇
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is defined by the relation

∇
2
𝐴 = 𝐷

𝑥
𝐴 − [𝑋

2
, 𝐴] with any 3 × 3 matrix 𝐴. The cyclic
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2
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2
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for the matrix 𝑋

2
has the

dimension 𝑛 = 8 if 𝜇 ̸= 0 and 𝑛 = 5 if 𝜇 = 0—the same
dimensions as for the matrix 𝑋

1
. The coefficients of closure

equations in the case of 𝑋
2
are given by the expressions (19),

after the replacement 𝜆2 󳨃→ 𝜇
2, for 𝜇 ̸= 0, and by the

expressions (21) for 𝜇 = 0—the same expressions as for
the matrix 𝑋

1
. Taking into account that the dimensions of

cyclic bases and the coefficients of closure equations are gauge

invariants, we see that the only obstacle for the existence
of a gauge transformation (16) we have found so far is the
condition 𝜇2 = 𝜆2. This makes sense to try to find the matrix
𝐺 of (16) explicitly.

It is very convenient to make use of the fact that, under
the gauge transformation (16), the characteristic matrix and
its covariant derivatives transform as tensors [6, 7]; namely,

∇
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2
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= 𝐺 (∇

𝑘

1
𝐶
1
)𝐺
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, 𝑘 = 0, 1, 2, . . . . (23)

Denoting the elements of the matrix 𝐺 as 𝑔
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, 3, we

find from the relation

𝐶
2
𝐺 = 𝐺𝐶
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(24)

that

𝑔
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33
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. (25)

Next, we find from the relation

(∇
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𝐶
2
) 𝐺 = 𝐺∇

1
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(26)

that

𝑔
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= −𝑢𝑔
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. (27)

Then, the relation

(∇
2

2
𝐶
2
)𝐺 = 𝐺∇

2

1
𝐶
1

(28)

leads us to

𝑔
31
= 𝜆𝑔
12
, 𝜇 = 𝜆. (29)

At this point, we can immediately conclude that the condi-
tions 𝜆 ̸= 0 and 𝑔

12
̸= 0 hold necessarily because det𝐺 =

𝜆𝑔
3

12
̸= 0. Finally, we get

𝐷
𝑥
𝑔
12
= 𝐷
𝑡
𝑔
12
= 0 (30)

directly from (16), that is, 𝑔
12
= 𝑐 with any nonzero constant

𝑐, and obtain

𝐺 = 𝑐(

0 1 0

0 0 1

𝜆 −𝑢 0

) . (31)

With the natural choice of 𝑐 = 1 in (31), we have det𝐺 = 𝜆,
and the inversematrix𝐺−1 does not exist for 𝜆 = 0. Of course,
one can take 𝑐 = 𝜆−1/3 and get det𝐺 = 1, but in this case the
matrix𝐺 does not exist for 𝜆 = 0. As we have already pointed
out above, the condition 𝜆 ̸= 0 is necessary for the existence
of the gauge transformation sought.

Consequently, the two consideredZCRswith thematrices
𝑋 and 𝑇 given by (12) and (14) are related to each other by
the gauge transformation (16) if and only if 𝜇 = 𝜆 ̸= 0, and
the corresponding matrix 𝐺 is given by (31), where one can
take 𝑐 = 1 without loss of generality. One can see easily from
(9), (11), and (31) that this gauge transformation corresponds
to the transformation (6) between the Lax pairs considered in
their operator form.Another way to see this consists in taking
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into account that𝐺 in (31) with 𝑐 = 1 is identical to𝑋
1
in (12),

and therefore we have Φ 󳨃→ 𝐺Φ = 𝐷
𝑥
Φ in (9) owing to (7).

Let us note that it is a new, interesting, and quite sur-
prising phenomenon that two ZCRs containing an essential
parameter are related to each other by a gauge transformation
for all values of the parameter except one value and no gauge
transformation exists between those ZCRs for that single
value of the parameter.

3. Arbitrary Spectral Parameter

Besides gauge transformations (9), there is a different—quite
evident but rarely mentioned in the literature—nongauge
type of equivalence transformations of ZCRs (8), namely, the
transformation (10). Let us try to make use of a combination
of transformations (9) and (10) to relate the two ZCRs given
by (12) and (14) to each other.

The problem is to find a matrix 𝐺 such that

𝑋
2
= 𝐺𝑋

3
𝐺
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+ (𝐷
𝑥
𝐺)𝐺
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,

𝑇
2
= 𝐺𝑇
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𝑡
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,

(32)
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1
, 𝑇
3
= −

̃
𝑇
1
. (33)

Since the gauge invariants of the cyclic basis in the case of
𝑋
3
coincide with the ones of𝑋

1
, we omit their consideration

and proceed directly to the analysis of the relations ∇𝑘
2
𝐶
2
=

𝐺(∇
𝑘

3
𝐶
3
)𝐺
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3
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𝐷
𝑥
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3
, 𝐴] for any 3 × 3matrix 𝐴, and 𝐶

3
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3
/𝜕𝑢 =

−𝐶
1
. From the relation 𝐶

2
𝐺 = 𝐺𝐶

3
, we find for the elements

𝑔
𝑖𝑗
of the matrix 𝐺 the following: 𝑔

11
= 𝑔
12
= 𝑔
32
= 0 and

𝑔
22
= −𝑔
13
. Next, we find from the relation (∇

2
𝐶
2
)𝐺 = 𝐺∇

3
𝐶
3

that 𝑔
21

= 𝑔
23

= 0 and 𝑔
33

= −𝑢𝑔
13
. Then, the relation

(∇
2

2
𝐶
2
)𝐺 = 𝐺∇

2

3
𝐶
3
leads us to 𝑔

31
= 𝑔
13

and 𝜇 = −𝜆,
where 𝑔

13
̸= 0 in order to have det𝐺 ̸= 0. Finally, we get

𝐷
𝑥
𝑔
13
= 𝐷
𝑡
𝑔
13
= 0 directly from (32), set 𝑔

13
= 1 without

loss of generality, and obtain

𝐺 = (

0 0 1

0 −1 0

1 0 −𝑢

) . (34)

Consequently, the two consideredZCRswith thematrices
𝑋 and𝑇 given by (12) and (14) are related to each other by the
combination of transformations (32) and (33) if and only if
𝜇 = −𝜆, and the corresponding matrix𝐺 is given by (34).The
case of zero spectral parameter is included now. Let us note
that we were forced to use the nongauge transformation (10),
which is evidently a counterpart of the transformation (5), in
order to cover the case of zero spectral parameter, because
the two studied ZCRs belong to two distinct classes of gauge
equivalence if the spectral parameter is zero.

4. Conclusion

In this paper, using the method of gauge-invariant descrip-
tion of zero-curvature representations (ZCRs) and the

method of cyclic bases of ZCRs, we have shown that the new
Lax pair of the Sawada-Kotera equation, discovered recently
by Hickman, Hereman, Larue, and Göktas, and the well-
known old Lax pair of this equation, considered in the form
of ZCRs, are gauge equivalent to each other if and only if
the spectral parameter is nonzero, while for zero spectral
parameter a nongauge transformation is required. As a by-
product, we have obtained an interesting example of two
ZCRswhich share the same set of gauge invariants but cannot
be related to each other by a gauge transformation.
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