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Acoustic solitons obtained through a reductive perturbation scheme are normally gov-
erned by a Korteweg-de Vries (KdV) equation. In multispecies plasmas at critical com-
positions the coefficient of the quadratic nonlinearity vanishes. Extending the analytic
treatment then leads to a modified KdV (mKdV) equation, which is characterized by
a cubic nonlinearity and is even in the electrostatic potential. The mKdV equation
admits solitons having opposite electrostatic polarities, in contrast to KdV solitons
which can only be of one polarity at a time. A Hirota formalism has been used to
derive the two-soliton solution. That solution covers not only the interaction of same-
polarity solitons but also the collision of compressive and rarefactive solitons. For the
visualisation of the solutions, the focus is on the details of the interaction region. A
novel and detailed discussion is included of typical electric field signatures that are often
observed in ionospheric and magnetospheric plasmas. It is argued that these signatures
can be attributed to solitons and their interactions. As such, they have received little
attention.

1. Introduction

Acoustic solitons in plasmas, obtained through a reductive perturbation theory (RPT),
are normally governed by a Korteweg-de Vries equation. The equation was originally
derived to model solitary waves observed on the surface of shallow water [Korteweg
& de Vries (1895); Ablowitz & Clarkson (1991)], but was seventy years later found to
have applications in various other fields of physics, notably in plasmas [Gardner et al.
(1967, 1974)]. Because of the algorithmic nature of RPT it became a popular tool in
theoretical studies of nonlinear acoustic waves in plasmas, for a variety of different model
compositions, resulting in a large number of scholarly publications.
It was also established that equations such as the KdV equation are completely

integrable, in the sense that besides the single soliton solution there are also N -soliton
solutions (for any positive integer N) which collide elastically. Even the one-soliton
solution shows that there is an intricate relation between the amplitude, width and
velocity of the wave. In particular, larger solitons are narrower but travel faster. For
a typical two-soliton interaction this means that a later-launched larger soliton will
overtake a slower one. After an intricate collision, both emerge unscathed except for
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small phase shifts. Hence the name “soliton” was coined Zabusky & Kruskal (1965) for
the resemblance with interacting particles.
The colloquial term “later-launched” has to be understood as follows. A two-soliton

solution is not merely a superposition of two single solitons, as this would be meaningless
for a nonlinear equation. Rather, a two-soliton solution has a complicated nonlinear
structure which asymptotically reduces to two separated single solitons. During the
collision the nonlinearity affects their individual profiles in quite unexpected ways.
However, after the collision the two solitons again separate, and resume their initial
shapes as if nothing has happened, except for small phase shifts. Indeed, the faster soliton
is shifted forward while the slower soliton is shifted backward, relative to the positions
where individual solitons would have been had they not collided.
When the plasma model allows for changes in polarities for critical values of the

compositional parameters [Das (1975); Das & Tagare (1975); Tagare (1986); Lee (2009);
Saini & Shalini (2013)], the analytic treatment then leads to a modified Korteweg-de
Vries (mKdV) equation with cubic nonlinearity. The equation is even in the electrostatic
potential φ, thus admitting solitons of opposite electrostatic polarities. In contrast, KdV
solitons can only be of one polarity at a time. Recall that the historic application of KdV
theory to surface waves on shallow water yielded only compressive solitons, in the shape
of humps. Water surfaces do not sustain rarefactive solitons, also called holes or dips.
To study the overtaking interactions between two solitons, Hirota’s bilinear method

has been applied, which can deal with any number of interacting waves because the
KdV and mKdV equations are completely integrable. Our visualization of two soliton
interactions will be focussed on what happens at the center of the interaction region, not
only for the electrostatic solitons but also for their derivatives, which yield the electric
field profiles. To the best of our knowledge, electric field profiles have not been studied
before.
As an aside, there is no Hirota or equivalent formalism that leads to solutions de-

scribing head-on collisions, neither for KdV nor mKdV equations. What is available
in the literature relies on an extension of the Poincaré-Lighthill-Kuo (PLK) formalism
of strained coordinates, which leads to approximate results of limited use [Verheest et
al. (2012a,b)]. The shortcoming of the PLK method is that it uses an addition of the
amplitudes in an essentially nonlinear problem. Furthermore, its results contradict recent
laboratory experiments [Harvey et al. (2010)] and numerical simulations [Kakad et al.
(2017); Kumar et al. (2017)].
In Section 2 we recall the essentials of RPT leading to mKdV equations, together

with their one-soliton solutions, well studied in the plasma and mathematical physics
literature. We summarize the steps of the Hirota bilinear method for the mKdV equation
in Section 3. The visualization of these interactions is covered in Section 4, first for a
collision of two humps, next for a hump and a hole. Novel features of these interactions,
in particular for electric fields, are discussed in Section 5. Electric fields are often seen in
ionospheric and magnetospheric satellite observations, but their overtaking interactions
have not been studied before. The paper concludes with a brief summary of the results
in Section 6.

2. Reductive perturbation formalism and evolution equations

There is a plethora of plasma compositions treated in the literature, allowing critical
densities leading to the mKdV equation. These plasmas are usually described by a number
of cold and/or warm fluid species, of quite different characteristics, in the presence of
some inertialess Boltzmann or nonthermal distributions for the hot species.
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RPT rests on two pillars: a suitable stretching of space and time and the expansion
of the dependent variables. For the family of KdV-type equations the stretching can be
chosen as

ξ = ε(X − V T ), τ = ε3T, (2.1)

or equivalent choices, with V the linear acoustic phase velocity, ε a small parameter and
X and T the physical space and time coordinates, respectively. This is inspired by the
dispersion law for linear waves with frequency ω and wave number k, by taking the limit
k → 0 but keeping the phase velocity ω/k finite, based on the idea that acoustic modes
have ω proportional k to lowest order. For the expansion of the electrostatic potential,
φ, we take

φ = εφ1 + ε2φ2 + ε3φ3 + . . . , (2.2)

with similar expansions for the plasma variables like densities, pressures and fluid
velocities of the different species.

Applying (2.1) and (2.2) to the basic fluid equations and Poisson’s equation produces
order by order in ε sets of equations for the successive φi. In the generic case, φ1 ≡ 0
leads to the KdV equation,

A
∂φ2

∂τ
+Bφ2

∂φ2

∂ξ
+

1

2

∂3φ2

∂ξ3
= 0. (2.3)

The coefficients A and B include the compositional plasma parameters and V ; the latter
as a solution of the linear dispersion law is a function of those same parameters. No
matter how complicated the plasma model is, one gets the KdV equation (2.3) which
has soliton solutions and other special properties, provided the plasma species obey
barotropic pressure-density relations [Verheest (2000)]. Given its ubiquity in physics,
this is the best known and most studied nonlinear soliton.

We assume that the plasma composition is critical (B = 0). Continuing with φ1 ̸= 0
then leads to the mKdV equation,

A
∂φ1

∂τ
+ Cφ2

1

∂φ1

∂ξ
+

1

2

∂3φ1

∂ξ3
= 0, (2.4)

where A and C again depend on the plasma parameters and V . Perusing the literature,
it becomes clear that almost all plasmas need to have at least three constituents before
B = 0 can be imposed under the condition that V annuls the linear dispersion relation.

The earliest examples are plasmas with two cold ion species (one positive, one negative)
in the presence of Boltzmann electrons [Das (1975); Das & Tagare (1975); Watanabe
(1984); Tagare (1986)]. Later, this was extended to include more cold or warm ion
species [Verheest (1988)], and the picture remains unchanged when various nonthermal
distributions are introduced for the hot electrons [Verheest (2015)], such as the kappa
distribution [Vasyliunas (1968); Summers & Thorne (1991)] and Tsallis nonextensive
distribution [Tsallis (1988); Lima et al. (2000)]. The only exception to this three or more
species rule is the Cairns distribution [Cairns et al. (1995)] because it admits a critical
density in the presence of only one cold ion species. Regardless of the finetuning of the
parameters needed for criticality, mKdV solitons were even observed experimentally in
multi-ion plasmas and their collision properties were investigated by numerically solving
the mKdV equation [Nakamura & Tsukabayashi (2009)].

Note that the mKdV equation (2.4) is invariant under the change φ to −φ. As a
consequence of this uncommon property, every positive polarity soliton has an equivalent
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negative one. The one-soliton solution of (2.4) is well known,

φ1 = ±
√

6UA

C
sech

[√
2UA(ξ − Uτ)

]
, (2.5)

where U is an arbitrary velocity, in the frame moving with velocity V with respect to
an inertial observer. On the other hand, the two-soliton solution is much less known in
the context of plasma physics, and will therefore be the main focus of our efforts in the
present paper.
In what follows, we will start from a generic form with coefficients chosen such that

the application of Hirota’s formalism [Hirota (1971, 1972, 2004)] is as simple as possible
[Drazin & Johnson (1989)]. A change of variables,

ξ = 2x

√
3

C
, τ = 48t

A

C

√
3

C
, φ1 = u, (2.6)

transforms the mKdV equation (2.4) into

ut + 24u2ux + uxxx = 0. (2.7)

This transformation requires that C > 0 (and B = 0). The coefficient 24 in (2.7) is chosen
to minimize the numerical factors when applying Hirota’s method, and derivatives are
denoted by lower-case subscripts x and t, where, for example, uxxx denotes the third
derivative of u with respect to x. Note that we have transformed the space and time
variables, but u remains a normalized electrostatic potential at the lowest nonzero order.

3. Hirota’s bilinear method and soliton solutions

Hirota (1971) developed an ingenious method to find exact N -soliton solutions for the
KdV equation. The method uses bilinear operators, hence the name Hirota’s bilinear
method. It was later shown that the method can be applied to large classes of nonlinear
evolution equations, including the mKdV equation.
The key idea is to change the dependent variable so that the given nonlinear equation

becomes bilinear in one or more new dependent variables. Once the appropriate bilinear
forms have been found, a formal series expansion is used to generate its solutions in an
iterative way. If pure solitons exist the iterative process terminates at a certain level and
the finite series leads to an exact solution.
Hirota’s method proceeds in three steps: (i) a judicious guess for the transformation of

the dependent variable, (ii) writing the transformed equation as a single bilinear equation
or a coupled system of bilinear equations, and (iii) using a formal expansion scheme to
solve these bilinear equation(s).
Inspiration for the initial step has sometimes come from performing the Painlevé

integrability test [Ablowitz & Clarkson (1991); Drazin & Johnson (1989)] of an evolution
equation or knowing its N -soliton solution from application of the inverse scattering
method.
Let us now recall some of the steps for the mKdV equation. Hirota (1971) introduced

bilinear differential operators, Dx and Dt, defined for ordered pairs of arbitrary functions
f(x, t) and g(x, t), as follows,

Dm
x Dn

t {f ·g} =

(
∂

∂x
− ∂

∂x′

)m (
∂

∂t
− ∂

∂t′

)n

f(x, t)g(x′, t′)

∣∣∣∣
x′=x,t′=t

, (3.1)

where m and n are nonnegative integers.
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Operators like Dx and Dt are bilinear because of their evident linearity in both
arguments f and g.
Whereas the KdV equation can be replaced by one bilinear equation [Hirota (1971);

Drazin & Johnson (1989)], the mKdV equation (2.7) requires a coupled system of bilinear
equations [Hirota (1972)] because the change of the dependent variable

u =
∂

∂x

(
arctan

(
f

g

))
=

fxg − fgx
f2 + g2

(3.2)

involves two functions f(x, t) and g(x, t). Substitution of (3.2) into (2.7) yields, after one
integration with respect to x,

(f2 + g2)(ftg − fgt + fxxxg − 3fxxgx + 3fxgxx − fgxxx)

−6(fgx − fxg)(ffxx − f2
x + ggxx − g2x) = 0. (3.3)

Setting each term equal to zero results in the following pair of bilinear equations,

(Dt +D3
x){f ·g} = 0, (3.4)

D2
x{f ·f + g·g} = 0. (3.5)

The expansions are

f = f0 + εf1 + ε2f2 + . . . ,

g = g0 + εg1 + ε2g2 + . . . , (3.6)

where f0 and g0 are constants (not both zero to avoid a trivial solution) and ε is a
bookkeeping parameter to disentangle the different orders. Once the successive fi and gi
have been computed, one sets ε = 1. Doing the computations, one finds from the lowest
nonzero order of (3.5) that either f0 = g1 = 0 or g0 = f1 = 0. Both choices are equivalent
for they amount to a sign change in the polarity of the nonlinear wave.
To derive the one and two-soliton solutions, we continue with f0 = g1 = 0. Then,

without loss of generality, we normalize g0 = 1 and recover from f1 = eθ1 (in the one-
soliton case) the well-known sech solution (2.5). Here and below one uses the notation
θi = kix − k3i t + δi, which incorporates the linear dispersion ωi = k3i characterizing the
KdV-family. In the two-soliton case, f1 = eθ1 + eθ2 and one can set f2 = 0. For one and
two-soliton interactions one can shift the origins of x and t so as to absorb δi, which
will henceforth be omitted. The same argument does no longer work for three-soliton
interactions (and higher). Suppressing the δi then requires non-unit amplitudes ai = eδi .
After computing g2 and verifying that gi = 0 for i > 3 and fi = 0 for i > 2, one obtains

f = eθ1 + eθ2 ,

g = 1− (k1 − k2)
2

(k1 + k2)2
eθ1+θ2 , (3.7)

and, from (3.2),

u =

k1e
θ1 + k2e

θ2 +
(k1 − k2)

2

(k1 + k2)2
(k1e

θ2 + k2e
θ1)eθ1+θ2

1 + e2θ1 + e2θ2 +
8k1k2

(k1 + k2)2
eθ1+θ2 +

(k1 − k2)
4

(k1 + k2)4
e2θ1+2θ2

. (3.8)

This is a family of two-soliton solutions of (3.2) with arbitrary constants k1 and k2.
Written as such, it is not readily imagined what the solution looks like. To get an idea of
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the shape one has to resort to visualizations which will be the focus of the next section.
We have also checked that (3.8) solves the mKdV equation (2.7), as other (equivalent)
expressions of the solution are possible [Anco et al. (2011)].

4. Interaction dynamics of two solitons for the mKdV equation

In this section we will visualize the dynamics of the two-soliton solution (3.8). The wave
numbers k1 and k2 determine the amplitude and polarity of the two solitons comprised
inside (3.8), and through the linear dispersion, also the phase speed k2i . Far away from
the collision region, the two solitons each assume the shape of a single soliton (2.5). The
larger the wave number ki, the taller the soliton will be and the faster it will travel since
the phase velocity equals k2i . A positive wave number produces a hump (or bump); a
negative wave number produces a hole (sometimes referred to as dip or depression), but
both travel to the right.
To visualize the asymptotic behaviour (in particular, separation into individual soli-

tons) we use long time intervals in Figures 1 and 3, typically for t varying between −40
and 40, with large (equal) time steps, e.g., ∆t = 40. To zoom into the collision regions,
shown in Figures 2 and 4, we let t vary between, say, −5 and 5, and use small (equal)
time steps of length 5. All pictures show snapshots of both solitons at various moments
in time to locate them on the x-axis before, during, and after their collision, going from
left to right. The large soliton peaks are easily identified, far away from the interaction
region.

4.1. Overtaking of same polarity solitons

Figure 1 illustrate the dynamics of solitons with the same polarity (two humps). The
parameters determining the respective shape of the solitons are (a) k1 = 0.5 or (b)
k1 = 0.3, and k2 = 1. The curves are shown for t = −40 (blue dashed), 0 (red) and 40
(black dotted), where the peaks move to the right as time increases. The pictures for two
holes would be the same apart from a vertical flip over the x-axis. The distinguishing
feature between parts (a) and (b) of Figure 1 is what happens in the interaction zone,
details of which are shown in the corresponding graphs in Figure 2.
Although we have graphed the solitons at equal time intervals, it can be seen that

when the larger hump has overtaken the smaller one, the net effect is a slight forward
shift of the larger soliton. Such shifts do not persist in time, and are only to be compared
to what the trajectory of the larger hump would have been, had it been a true one-soliton
solution, alone in the physical system. After a while the solitons separate and resume
their original shapes. Asymptotically, e.g., for times t < −40 or t > 40, the profile of
each soliton becomes undistinguishable from the one-soliton shape.
To start, Figure 1 illustrates how a faster, larger but narrower hump with positive

polarity overtakes a slower, smaller but wider one, also with positive polarity, but for
different ratios k1/k2. By reducing the time step near the overtaking region we show in
Figure 2 how the interaction evolves between the larger and the smaller soliton, for the
cases shown in Figure 1. The parameters match those in Figure 1, but with smaller time
steps, t = −5 (blue dashed), 0 (red) and 5 (black dotted).
There are two distinct possibilities. For the first possibility the parameters are chosen

such that during the interaction there are at all times two distinct peaks, as shown in
Figure 2(a). Thus, as the first peak increases in amplitude and the second peak decreases,
it looks as if the larger and the smaller peaks have swapped places. In other words, after
the collision the larger soliton is ahead, having undergone a forward phase shift, and
mutatis mutandis for the smaller soliton.
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Figure 1. Typical overtaking of a smaller by a larger hump, for (a) k1 = 0.5 and k2 = 1 and
(b) k1 = 0.3 and k2 = 1. The curves correspond to t = −40 (blue dashed), 0 (red) and 40 (black
dotted), where the peaks move to the right as time increases.
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Figure 2. Details of the overtaking interaction of a smaller by a larger hump, for the parameters
used in Figure 1. The curves correspond to t = −5 (blue dashed), 0 (red) and 5 (black dotted).

The other possibility is that, as we decrease k1, keeping k2 fixed, the figure changes
qualitatively and the two solitons temporarily merge into a single but distorted peak,
illustrated in Figure 2(b). This occurs for k1/k2 < 0.39. Indeed, only the ratio is
important, as we can, without loss of generality, take k2 = 1 for the largest of the peaks,
and k1 < 1 for the smaller one. Analogous results have been found in the mathematics
literature [Anco et al. (2011)].
Switching the polarities from positive to negative produces the same type of figures,

except that the Figures 1 and 2 are vertically flipped (not shown). All this is reminiscent
of what happens for the interaction of KdV solitons, which are always of the same
polarity, depending on the sign of B (not shown here, but presented in many papers
in the literature).
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Figure 3. Part (a) shows the typical overtaking of a smaller hole by a larger hump, for k1 = −0.5
and k2 = 1, whereas part (b) concerns the opposite, where a larger hole overtakes a smaller hump,
for k1 = 0.5 and k2 = −1. The curve coding is as in Figure 1.

4.2. Overtaking of opposite polarity solitons

The case of two solitons having opposite polarities leads to graphs which have not
been systematically studied before in a plasma physics context. Figure 3 illustrates the
dynamics of solitons of the opposite polarity (hump and hole). Figure 4 gives a clearer
(zoomed) view of what happens in the interaction zones.
We first illustrate in Figure 3(a) how a faster, larger but narrower hump of positive

polarity overtakes a slower, smaller but wider hole of negative polarity. Larger and smaller
refer to the absolute values of the amplitudes of the respective solitons. Figure 3(b) shows
a larger hole overtaking a smaller hump. The parameters are k1 = −0.5, k2 = 1 in (a),
and k1 = 0.5, k2 = −1 in (b). In part (a), increasing k2 makes the hump larger but
narrower; decreasing |k1| makes the hole shallower but wider. For part (b) the converse
holds, increasing k2 makes the hole deeper but narrower; decreasing |k1| makes the hump
smaller but wider.
By reducing the time step near the overtaking region of the two solitons, we show in

Figure 4 how the interaction evolves between the larger and the smaller soliton. The
parameters are as in Figure 3, but with smaller time steps, for t = −5, 0, 5.
In particular, note that in part (a) the hole is split in two when the hump passes

through, and the holes are less deep, rendering the hump larger. The net result is that
the hole is transferred from being ahead of the hump to trailing it. On the other hand,
in case (b) the hump is split when the hole passes through, with similar remarks about
smaller humps and a deeper hole.
This mechanism has been observed in a variety of other parameter ranges we have

investigated, but omitted here to avoid repetitive figures that are qualitatively similar.
And, as before, the mechanism occurs for all ratios |k1/k2|.
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Figure 4. Details of the centre regions for the overtaking interaction, in part (a) of a smaller
hole by a larger hump, for the parameters given in Figure 3(a), and in (b) of a smaller hump by
a larger hole, for the parameters given in Figure 3(b). The curve coding is as in Figure 2.
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Figure 5. Generic profiles for mKdV single-soliton solution and associated electric field.

The analogy between parts (a) and (b) of Figure 3 is due to an underlying antisym-
metry:

u(−x,−t)
∣∣
k1→−k1, k2→−k2

= −u(x, t). (4.1)

A consequence is that one can prove mathematically from (3.8) that k1 + k2 → 0 yields
u(x, t) → 0. This is to be anticipated: When the hole is as deep as the hump is tall, both
will cancel and travel at the same speed, hence one is reduced to the trivial solution of
the mKdV equation.

5. Electric field profiles

We recall that u = φ1 represents the electrostatic potential. In the theoretical analysis
of acoustic solitons in multispecies plasmas this is usually the more important quantity.
However, its derivatives have a physical meaning: up to a change of sign, the first
derivative gives the electric field, and the second, the global charge density of the plasma.
This is in contrast to the original application of the KdV equation – describing solitary
waves on the surface of shallow water – where the height of the wave is important but
the derivatives of that elevation are not of physical interest.
In plasma applications, the electric field of the wave is given by

E = −∂φ

∂x
. (5.1)

With respect to solitary waves having a potential hump or hole, it follows that the
associated electric fields show a typical bipolar signature, of which a generic picture is
given in Figure 5 for a positive single-soliton solution (2.5). For a potential hump, where
the electrostatic potential rises from zero to a maximum, before decreasing again to zero
at infinity, its derivative is initially positive but then switches to negative. Because of
the minus sign in the definition of the electric field, the bipolar structure starts with
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a negative part and ends with a positive part. For potential holes the opposite occurs.
Thus, the electric field is also an indicator for the polarity of the mode.
The interest in such bipolar electric field structures stems from the fact that they have

been observed in a plethora of space observations by ionospheric and auroral satellite
missions as diverse as GEOTAIL [Matsumoto et al. (1994)], POLAR [Franz et al. (1998,
2005)], FAST [McFadden et al. (2003)] and CLUSTER [Pickett et al. (2004, 2008);
Norgren et al. (2015)] where the electric field (rather than the electrostatic potential)
is observed. In some of the satellite observations both the electrostatic potential and the
electric field are observed by different instruments [McFadden et al. (2003)], which can
thus serve as a way to check the consistency of the observations.
However, there are many different ways of modelling such structures, which in the

case of electron holes refer to a localized plasma region where the electron density is
lower than the surrounding plasma [Hutchinson (2017)]. The decreased electron density
causes a local maximum in charge density and electrostatic potential. They might be
viewed as a Bernstein-Greene-Kruskal (BGK) mode [Bernstein et al. (1957)], but can also
be described in terms of solitons. For further details we refer to an excellent overview
by Hutchinson (2017) and to recent extensions of BGK theory by Harikrishnan et al.
(2018a,b). Among the many interpretations, the one that interests us here is that of
electrostatic solitary waves and structures, but there remains ambiguity in identifying
the nature of observed phenomena.
Furthermore, there are many observations that do not fit the simple patterns and

cannot be explained by simple solitons and their electric fields. A specific example is found
in Figure 1(b) in [Pickett et al. (2004)], where besides the typical bipolar structures there
are tripolar structures or modifications of the bipolar electric field structure by wiggles
on the sides. For the latter we advanced a possible explanation in terms of supersolitons
[Dubinov & Kolotkov (2012); Verheest et al. (2013); Verheest & Hellberg (2015); Kakad
et al. (2016); Olivier et al. (2018)], but in personal correspondence with the lead author
of Pickett et al. (2004) these were thought to indicate an overtaking or even merging of
solitons [Pickett (2013)].
Moreover, in most of the observed electric fields, the bipolar profiles have larger or

smaller amplitudes, which – if they are due to propagating solitons – implies that the
smaller ones will be overtaken by the larger ones. The property that larger amplitude
structures are faster than smaller ones also holds for large amplitude solitary waves
[Verheest (2010)] which are commonly described by a Sagdeev pseudopotential formalism
[Sagdeev (1966)]. The drawback of this method is that it usually does not give analytical
expressions for the profiles nor for their interactions. Outside the KdV range, results will
have to come from numerical simulations (see, e.g., Kakad et al. (2017)).
Of course, observing the precise overtaking of two bipolar structures would be serendip-

itous, but signals close to or after an overtaking collision have been recorded. Regardless
of their theoretical explanation, these observations have been interpreted in terms of
propagating structures, even though that has rarely been unambiguously confirmed.
There are some CLUSTER observations where a fortuitous configuration of two of the
four satellites was able to capture propagation of the major structures, while others were
already quite distorted [Pickett et al. (2008); Norgren et al. (2015)].
Hence, in what follows we focus on the interaction properties of the electric fields.

The graphs to follow show the negative of the derivative of (3.8) with respect to x.
We omit the cumbersome mathematical expression of the derivative because it offers no
physical insight. Using the same parameter conditions as in Figures 1–4, we start with the
positive electrostatic polarities in Figure 6. As in Figure 1, the parameters determining
the respective shapes of the solitons are (a) k1 = 0.5 and (b) k1 = 0.3, both with k2 = 1.
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Figure 6. Electric field profiles of the soliton interactions for (a) k1 = 0.5 or (b) k1 = 0.3 and
k2 = 1, as shown in Figure 1. The curves correspond to t = −40, 0, 40, with a similar curve
coding.
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Figure 7. Details of the electric field profiles for the parameters used in Figure 6. The curves
correspond to t = −5, 0, 5.

The curves are shown for t = −40, 0, 40 with the usual curve coding. Far away from
the interaction region, the electric field shows two characteristic bipolar signatures, a
stronger one for the larger soliton and a weaker one for the smaller soliton.

As can be seen on these graphs, during the interaction the curves become quite
muddled. This is shown in more detail in Figure 7, for both sets of parameters. Parts (a)
of Figures 1 and 2 showed two distinct peaks. Parts (b) of the same figures illustrated
that the peaks briefly merged into a single distorted one. Consequently, in Figures 6
and 7 there are always two distinct bipolar signatures in parts (a), sometimes very close
together, whereas in parts (b) there is a stage when there is only one bipolar structure,
but with wiggles on the wings. Some of the latter characteristics have also been seen
on supersolitons, but in larger-amplitude descriptions outside the reductive perturbation
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Figure 8. Electric field profiles for k1 = −0.5 and k2 = 1 for the soliton interactions shown in
Figure 3.
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Figure 9. Details of the electric field profiles for the parameters used in Figure 8. The curves
correspond to t = −5, 0, 5.

approach [Dubinov & Kolotkov (2012); Verheest et al. (2013)] or in simulations [Kakad
et al. (2016)].

Next, in Figures 8 and 9 we graph the overtaking of a smaller hole by a larger hump.
Here again, the electric field bipolar signatures can be recognized far from the interaction
zone, except that now the signatures differ not only in amplitude but also in sign. This is
less often seen in space observations but the complicated interaction region itself might
perhaps help with identifying new features.

The figures for the converse case, i.e., the overtaking of a smaller hump by a larger
hole, would be obtained by flipping the graphs shown in Figures 8 and 9 over the x axis
(not shown).

The second derivative of u = φ also has a physical interpretation. Indeed, it follows
from Poisson’s equation

σ = −∂2φ

∂x2
(5.2)

that, up to a sign, it corresponds to the global charge density in the solitary wave(s).
However, this has rarely been plotted in theoretical papers. Viewed more as a curiosity
than for its additional physical insight, the available plots are only for single solitons or
double layers [Verheest & Hellberg (2015)]. Due to the additional local extrema, we have
not attempted to graph these density curves for two interacting mKdV solitons.
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6. Conclusions

While many papers have covered two-soliton overtaking interactions in plasmas, they
have mostly focused on KdV solitons having the same polarity. We stress that the KdV
equation can only deal with one sign of the quadratic nonlinearity for a given model.
Likewise, mKdV equations can address the overtaking of same polarity solitons, in which
case profiles and interaction regions look quite similar to what one obtains for KdV
solitons. Depending on the relative amplitudes (or equivalently, velocities), the salient
feature for two-soliton interaction of the same polarity is that there are either always two
distinct humps or that they briefly merge in the interaction region into a single distorted
hump. In either case, the collisions are accompanied by phase shifts.
The most interesting case is the overtaking of mKdV solitons of opposite polarities,

where in the interaction region the slower soliton slows down and splits, to let the
faster soliton pass through. While this happens, the faster soliton is temporarily slightly
accelerated. Far from the interaction region, on either side, the solitons are well separated
and each matches the sech-profile of a single mKdV soliton.
Relevant to plasma physics is the study of the associated electric fields, which are often

seen in ionospheric and magnetospheric satellite observations. Seemingly, the electric
fields are more easily observed than the electrostatic solitons themselves. Such electric
fields are characterized by typical bipolar structures or variations thereof. In this paper
we discussed and illustrated the overtaking and interaction properties of some of these
signatures. As far as we know, this is a novel application.
The case of opposite polarity modes overtaking each other is more rare. It might

therefore be interesting to search for some of these in more complicated scenarios, in
particular, where not all signatures are purely bipolar and well separated.
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