Time= 30 msecs (D2) CSM$USERS:[WHEREMAN.HIROTA]H_ITOB8.OUT;1 (C3) batchload("hir_sing.max")$ Batching the file hir_sing.max Batchload done. Time= 4220 msecs (C4) n:3$ Time= 0 msecs (C5) B(f,g):= - Dxt[2,2](f,g) - Dxt[0,2](f,g) + Dx[2](f,g)$ Time= 0 msecs (C6) name:Ito_b8$ Time= 10 msecs (C7) hirota(b,name,n,1,1,true,true)$ /*********************************************************/ /* WELCOME TO THE MACSYMA PROGRAM HIR_SING.MAX */ /* BY WILLY HEREMAN AND WUNING ZHUANG */ /* FOR THE CALCULATION OF SOLITONS */ /* OF THE ITO_B8 EQUATION */ /* WITH HIROTA'S METHOD */ /* Version 1.0, released on May 29, 1995 */ /*********************************************************/ The equation in f corresponding to the given bilinear operator is 2 2 2 3 4 2 3 d F d F d F dF 2 d F dF d F d F dF d F --- --- - F --- + (--) - 2 ------ -- + F ------- + F --- - 2 -- ------ 2 2 2 dX 2 dX 2 2 2 dT 2 dT dX dX dT dX dT dX dT dT dX 2 d F 2 dF 2 + 2 (-----) - (--) = 0 dT dX dT 2 2 2 For this equation the polynomial P(K,-OMEGA,L) = (- K - 1) OMEGA + K The equation has at least a one- and two-soliton solution. For the ITO_B8 equation, there are 2 different dispersion relations. K K I I [OMEGA = - ------------, OMEGA = ------------] I 2 I 2 SQRT(K + 1) SQRT(K + 1) I I We use the dispersion relation K I OMEGA[I] = - ------------ 2 SQRT(K + 1) I In the expansion of f we use THETA = K X - OMEGA T + CST. Starting the random test(s) for the existence of a 3 soliton solution. Wavenumbers k[i] selected for the random number test(s): K = 21 1 K = 8 2 K = 17 3 The equation did not pass the random number test(s) for the existence of a 3 soliton solution. The condition 162505211904 (481022565 SQRT(290) SQRT(442) - 826179090 SQRT(65) SQRT(442) + 2099992138 SQRT(65) SQRT(290) - 339776325320) /435358893125 = 0 must be satisfied. Starting the construction of the two-soliton solution. The coefficient a[i,j] is calculated via the polynomial form. 2 2 2 The polynomial is P(K,-OMEGA,L) = (- K - 1) OMEGA + K 2 2 2 The coefficient a[i,j] = (2 SQRT(K + 1) K SQRT(K + 1) I J J 2 2 2 2 2 - 4 K SQRT(K + 1) K SQRT(K + 1) + 2 K SQRT(K + 1) SQRT(K + 1) I I J J I I J 2 2 3 2 2 3 + 2 SQRT(K + 1) SQRT(K + 1) - K K + 2 K K - K K - 2 K K - 2) I J I J I J I J I J 2 2 2 2 2 /(2 SQRT(K + 1) K SQRT(K + 1) + 4 K SQRT(K + 1) K SQRT(K + 1) I J J I I J J 2 2 2 2 2 3 + 2 K SQRT(K + 1) SQRT(K + 1) + 2 SQRT(K + 1) SQRT(K + 1) + K K I I J I J I J 2 2 3 + 2 K K + K K + 2 K K - 2) I J I J I J THETA + THETA THETA THETA 2 1 2 1 The function f = A %E + %E + %E + 1 1, 2 At the end of the computations the form of the function f and the coefficient a[1,2] are explicitly available. The explicit factored form of a[1,2] can be obtained by typing factor(a[1,2]); The explicit forms of theta[i] and omega[i] are also available. The form of f can be obtained by typing f; . The explicit form of f can be obtained by typing expression(f); . Time= 23950 msecs (C8) kill(all)$ Time= 40 msecs (C1) closefile();