"/*********************************************************/" "/* WELCOME TO THE MATHEMATICA PROGRAM HIROTA.M */" "/* BY WILLY HEREMAN AND WUNING ZHUANG */" "/* FOR THE CALCULATION OF SOLITONS */" "/* OF THE ""KdV"" EQUATION */" "/* WITH HIROTA'S METHOD */" "/* Version 1.0 firts released on May 29, 1995 */" "/* Last updated on January 25, 2007 */" "/* Copyright 1995-2007 */" "/*********************************************************/" "The equation in f corresponding to the given bilinear operator is " Derivative[0, 0, 0, 1][f][x, y, z, t]*Derivative[1, 0, 0, 0][f][x, y, z, t] - f[x, y, z, t]*Derivative[1, 0, 0, 1][f][x, y, z, t] - 3*Derivative[2, 0, 0, 0][f][x, y, z, t]^2 + 4*Derivative[1, 0, 0, 0][f][x, y, z, t]* Derivative[3, 0, 0, 0][f][x, y, z, t] - f[x, y, z, t]*Derivative[4, 0, 0, 0][f][x, y, z, t]" = 0" "For this equation the polynomial P(K,-OMEGA,L)= "K^4 - K*OMEGA "The equation has at least a one- and two-soliton solution." "For the ""KdV"" equation, " "we use the dispersion relation: " " OMEGA[I] = "K[I]^3 "In the Expansion of f we use THETA = K X - OMEGA T + CST." "Starting the random test(s) for the existence of a " 3" soliton solution." "Wavenumbers K[I] selected for the random number test(s): " "for this test K["1"] = "7 "for this test K["2"] = "2 "for this test K["3"] = "13 "The equation passed the random number test(s) for the existence" "of a "3" soliton solution." "Starting the random test(s) for the existence of a " 4" soliton solution." "Wavenumbers K[I] selected for the random number test(s): " "for this test K["1"] = "17 "for this test K["2"] = "6 "for this test K["3"] = "20 "for this test K["4"] = "10 "The equation passed the random number test(s) for the existence" "of a "4" soliton solution." "Starting the construction of the three-soliton solution." "The coefficient a[I,J] is calculated via the polynomial form." "The polynomial is P[K,-OMEGA,L] = "K^4 - K*OMEGA "The coefficient a[I,J] = "(K[I] - K[J])^2/(K[I] + K[J])^2 "The coefficient b[1,2,3] is calculated via the polynomial form." "The coefficient b[1,2,3] = "((K[1] - K[2])^2*(K[1] - K[3])^2* (K[2] - K[3])^2)/((K[1] + K[2])^2*(K[1] + K[3])^2*(K[2] + K[3])^2) "The function f = "1 + E^THETA[1] + E^THETA[2] + E^THETA[3] + E^(THETA[1] + THETA[2])*a[1, 2] + E^(THETA[1] + THETA[3])*a[1, 3] + E^(THETA[2] + THETA[3])*a[2, 3] + E^(THETA[1] + THETA[2] + THETA[3])*b[1, 2, 3] "At the end of the computations the form of the function f" "and the coefficients a[i,j] and b[1,2,3] are explicitly available." "The explicit forms of OMEGA[i] and THETA[i] are also available." "The Explicit form of f can be obtained by typing EXPRF." "This is U[X,T] "2*(-((E^(-T + X) + (5*E^((-125*T)/64 + (5*X)/4))/4 + (3*E^((-27*T)/8 + (3*X)/2))/2 + E^((-189*T)/64 + (9*X)/4)/36 + E^((-35*T)/8 + (5*X)/2)/10 + E^((-341*T)/64 + (11*X)/4)/44 + E^((-405*T)/64 + (15*X)/4)/65340)^2/ (1 + E^(-T + X) + E^((-125*T)/64 + (5*X)/4) + E^((-27*T)/8 + (3*X)/2) + E^((-189*T)/64 + (9*X)/4)/81 + E^((-35*T)/8 + (5*X)/2)/25 + E^((-341*T)/64 + (11*X)/4)/121 + E^((-405*T)/64 + (15*X)/4)/245025)^2) + (E^(-T + X) + (25*E^((-125*T)/64 + (5*X)/4))/16 + (9*E^((-27*T)/8 + (3*X)/2))/4 + E^((-189*T)/64 + (9*X)/4)/16 + E^((-35*T)/8 + (5*X)/2)/4 + E^((-341*T)/64 + (11*X)/4)/16 + E^((-405*T)/64 + (15*X)/4)/17424)/ (1 + E^(-T + X) + E^((-125*T)/64 + (5*X)/4) + E^((-27*T)/8 + (3*X)/2) + E^((-189*T)/64 + (9*X)/4)/81 + E^((-35*T)/8 + (5*X)/2)/25 + E^((-341*T)/64 + (11*X)/4)/121 + E^((-405*T)/64 + (15*X)/4)/245025))