"/*********************************************************/" "/* WELCOME TO THE MATHEMATICA PROGRAM HIROTA.M */" "/* BY WILLY HEREMAN AND WUNING ZHUANG */" "/* FOR THE CALCULATION OF SOLITONS */" "/* OF THE ""Parameter"" EQUATION */" "/* WITH HIROTA'S METHOD */" "/* Version 1.0 firts released on May 29, 1995 */" "/* Last updated on January 25, 2007 */" "/* Copyright 1995-2007 */" "/*********************************************************/" "The equation in f corresponding to the given bilinear operator is " kpar*Derivative[0, 0, 0, 1][f][x, y, z, t]^2 - kpar*f[x, y, z, t]*Derivative[0, 0, 0, 2][f][x, y, z, t] - 3*Derivative[1, 0, 0, 1][f][x, y, z, t]* Derivative[2, 0, 0, 0][f][x, y, z, t] + 3*Derivative[1, 0, 0, 0][f][x, y, z, t]* Derivative[2, 0, 0, 1][f][x, y, z, t] + Derivative[0, 0, 0, 1][f][x, y, z, t]* Derivative[3, 0, 0, 0][f][x, y, z, t] + 10*Derivative[3, 0, 0, 0][f][x, y, z, t]^2 - f[x, y, z, t]*Derivative[3, 0, 0, 1][f][x, y, z, t] - 15*Derivative[2, 0, 0, 0][f][x, y, z, t]* Derivative[4, 0, 0, 0][f][x, y, z, t] + 6*Derivative[1, 0, 0, 0][f][x, y, z, t]* Derivative[5, 0, 0, 0][f][x, y, z, t] - f[x, y, z, t]*Derivative[6, 0, 0, 0][f][x, y, z, t]" = 0" "For this equation the polynomial P(K,-OMEGA,L)= " K^6 - K^3*OMEGA + kpar*OMEGA^2 "The equation has at least a one- and two-soliton solution." "For the ""Parameter"" equation, " "there are "2" different dispersion relations;" "the first one is: "-(Sqrt[-K[i]^6 + K[0]^3*M[0]]/Sqrt[kpar]) "we use the dispersion relation: " " OMEGA[I] = "(K[I]^3 - Sqrt[K[I]^6 - 4*kpar*K[I]^6])/(2*kpar) "In the Expansion of f we use THETA = K X - OMEGA T + CST." "Starting the random test(s) for the existence of a " 3" soliton solution." "Wavenumbers K[I] selected for the random number test(s): " "for this test K["1"] = "6 "for this test K["2"] = "8 "for this test K["3"] = "14 "The equation did not pass the random number test(s) for " "the existence of a "3" soliton solution." "The condition "(-69318195335474537771827200*(1 + 5*kpar)* (-1 + Sqrt[1 - 4*kpar] + 2*kpar + 2*kpar^2))/kpar^3" = 0 must be \ satisfied." "Starting the construction of the two-soliton solution." "The coefficient a[I,J] is calculated via the polynomial form." "The polynomial is P[K,-OMEGA,L] = "K^6 - K^3*OMEGA + kpar*OMEGA^2 "The coefficient a[I,J] = "(-3*K[I]^5*K[J] + 12*kpar*K[I]^5*K[J] + 3*K[I]^2*Sqrt[K[I]^6 - 4*kpar*K[I]^6]*K[J] + 3*K[I]^4*K[J]^2 - 30*kpar*K[I]^4*K[J]^2 - 3*K[I]*Sqrt[K[I]^6 - 4*kpar*K[I]^6]*K[J]^2 - K[I]^3*K[J]^3 + 40*kpar*K[I]^3*K[J]^3 + 3*K[I]^2*K[J]^4 - 30*kpar*K[I]^2*K[J]^4 - 3*K[I]*K[J]^5 + 12*kpar*K[I]*K[J]^5 + Sqrt[K[I]^6 - 4*kpar*K[I]^6]*Sqrt[K[J]^6 - 4*kpar*K[J]^6] - 3*K[I]^2*K[J]*Sqrt[K[J]^6 - 4*kpar*K[J]^6] + 3*K[I]*K[J]^2*Sqrt[K[J]^6 - 4*kpar*K[J]^6])/ (-3*K[I]^5*K[J] + 12*kpar*K[I]^5*K[J] + 3*K[I]^2*Sqrt[K[I]^6 - 4*kpar*K[I]^6]*K[J] - 3*K[I]^4*K[J]^2 + 30*kpar*K[I]^4*K[J]^2 + 3*K[I]*Sqrt[K[I]^6 - 4*kpar*K[I]^6]*K[J]^2 - K[I]^3*K[J]^3 + 40*kpar*K[I]^3*K[J]^3 - 3*K[I]^2*K[J]^4 + 30*kpar*K[I]^2*K[J]^4 - 3*K[I]*K[J]^5 + 12*kpar*K[I]*K[J]^5 + Sqrt[K[I]^6 - 4*kpar*K[I]^6]*Sqrt[K[J]^6 - 4*kpar*K[J]^6] + 3*K[I]^2*K[J]*Sqrt[K[J]^6 - 4*kpar*K[J]^6] + 3*K[I]*K[J]^2*Sqrt[K[J]^6 - 4*kpar*K[J]^6]) "The function f = "1 + E^THETA[1] + E^THETA[2] + E^(THETA[1] + THETA[2])*a[1, 2] "At the end of the computations the form of the function f" "and the coefficient a[1,2] are explicitly available." "The explicit forms of OMEGA[i] and THETA[i] are also available." "The Explicit form of f can be obtained by typing EXPRF."