Colorado School of Mines

Image and Multidimensional Signal Processing

Professor William Hoff
Dept of Electrical Engineering & Computer Science
http://inside.mines.edu/~whoff/
Intensity Transformations
Gray Level Transformations - Examples

- Map an input value r to an output value s
- Examples:
 - Contrast stretching
 - Thresholding

![Diagram showing gray level transformations](image)

- Most image editing software (e.g., Adobe Photoshop) allows you to do transformations like this
Example – gamma transform (exponential)

- Each input value is raised to the power of gamma
- Gamma transforms were often used to correct the intensities in CRT displays

FIGURE 3.6 Plots of the equation $s = cr^\gamma$ for various values of γ ($c = 1$ in all cases).
Matlab examples

• Image negative
 – \(I = \text{imread}('rice.png'); \)
 – \(I_n = 255 - I; \) \% image negative

• Gamma transform
 – \(I = \text{imread}('Fig0308(a).tif'); \) \% image of spine
 – \(I = \text{double}(I)/255; \) \% scale to 0..1 (could also use \text{im2double})
 – \(I_g = \text{power}(I, 0.3); \) \% enhances dark or light?

 – \(I = \text{imread}('Fig0309(a).tif'); \) \% aerial image
 – \(I = \text{double}(I)/255; \) \% scale to 0..1
 – \(I_g = \text{power}(I, 4.0); \) \% enhances dark or light?
Quick Review of Probability Concepts (2.6.8)

• Probability
 – We do an experiment (e.g., flip a coin) N times
 – We count number of outcomes of a certain type (e.g. heads)
 – Probability of getting that outcome is the relative frequency as N grows large
 \[
 P(\text{heads}) = \frac{n_H}{N}
 \]
 – Probability of a particular outcome is between 0 and 1
 – Probabilities of all outcomes sum to 1

• Random variable
 – Takes on values as a result of performing an experiment (i.e., maps experimental outcomes to real numbers)
 – Example
 • Random variable x represents coin toss
 • E.g., $x=0$ for heads and $x=1$ for tails
 • $P(x=0) = 0.5$, $P(x=1) = 0.5$

For more help see http://www.imageprocessingplace.com/root_files_V3/tutorials.htm
Quick Review of Probability Concepts (cont)

• Mean (or expected value) of a random variable

\[\bar{x} = \mu_x = E[x] = \frac{1}{N} \sum_{i=1}^{N} x_i \]

 – where \(x_i \) is the value of the \(i \)th experiment

• Say \(x \) can take on the values \(r_0, r_1, \ldots r_{L-1} \)

• Then

\[p(x=r_k) = \frac{n_k}{N} \]

 – where \(n_k = \) number of times \(r_k \) occurs in \(N \) trials

• The mean is

\[\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} \left[n_0 r_0 + n_1 r_1 + \ldots + n_{L-1} r_{L-1} \right] \]

\[= \left[\frac{n_0}{N} r_0 + \frac{n_1}{N} r_1 + \ldots + \frac{n_{L-1}}{N} r_{L-1} \right] = \sum_{k=0}^{L-1} p(r_k) r_k \]
Quick Review of Probability Concepts (cont)

- Variance of a random variable is
 \[
 \sigma^2 = E\left[(x - \mu_x)^2 \right] = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2
 \]

- Also
 \[
 \sigma^2 = \sum_{k=0}^{L-1} p(r)(r_k - \mu_x)^2
 \]

- Note - sometimes it is easier to compute variance using
 \[
 \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_x)^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x_i^2 - 2x_i\mu_x + \mu_x^2 \right)
 \]
 \[
 = \frac{1}{N} \sum_{i=1}^{N} x_i^2 - \frac{1}{N} \sum_{i=1}^{N} (2x_i\mu_x) + \frac{1}{N} \sum_{i=1}^{N} \mu_x^2 = E[x^2] - \mu_x^2
 \]
Quick Review of Probability Concepts (cont)

- *Continuous* random variables (as opposed to *discrete*) can take on non-integer values (e.g., temperature)

- We can’t talk about the probability of \(x \) taking a specific value, but we can give the probability of \(x \) having a value somewhere in a range

- The cumulative probability distribution function (CDF) is
 \[
 F(a) = P(-\infty < x \leq a) \quad 0 \leq F(x) \leq 1
 \]

- The probability density function (pdf) is
 \[
 p(x) = \frac{dF(x)}{dx}
 \]

- The probability that \(x \) is between \(a \) and \(b \) is
 \[
 P(a < x \leq b) = F(b) - F(a) = \int_{a}^{b} p(w) \, dw
 \]
Image Histograms

- Histogram is a count of the number of pixels n_k with each gray level r_k
 \[n_k = h(r_k) \]
- It is an approximation of the probability density function
 \[p(r_k) = \frac{n_k}{N} \]
Example

- Find histogram
- Find pdf, CDF
- Find mean
- Find variance
Histogram Equalization

• We can transform image values to improve the contrast

• Want histogram of the image to be flat

• This will make full use of the entire display range

• This is called histogram equalization
Histogram Equalization

• Let the histogram of the input image be \(H(r) \)

• The pdf of the input image is
 \[
 p_r(r) = \frac{H(r)}{N}
 \]

• We want a transformation \(s = T(r) \) that will give an output image whose histogram is flat:
 \[
 p_s(s) = \text{const}
 \]

• The transformation should be a monotonically increasing function
 – this prevents artifacts created by reversals of intensity
Histogram equalization (contd.)

- Consider the cumulative probability distribution function of the input image

\[F(r) = \int_{0}^{r} p_r(w) \, dw \]

- If we use this as our transformation function (scaled by the maximum value \(L-1 \)), the output image will have \(p_s(s) = \text{const} \)

\[s = T(r) = (L-1) \int_{0}^{r} p_r(w) \, dw \]
Histogram Equalization

- (Show this from considerations of probability)
Histogram Equalization

- Histogram equalization – Matlab’s `histeq`
 - try “liftingbody.png”
Doing histogram equalization by hand

- Get histogram of $M \times N$ input image $H_i(r) = n_r$. Gray levels range from $0..L-1$.
- Determine probability density function (pdf)
 \[p_r(r_k) = \frac{n_k}{MN} \]
- Determine cumulative probability distribution (CDF)
 \[F_r(r_k) = \sum_{j=0}^{k} p_r(r_j) \]
- Scale $T(r)$ to desired range of output gray levels
 \[T(r) = (L-1) F_r(r) \]
- Apply the transformation $s = T(r)$ to compute the output values
Example

- 64x64 image
 - \(M \times N = 64 \times 64 = 4096 \)
- 3 bits/pixel
 - Gray levels range from 0 to \(L-1 \)
 - \(L = 2^3 = 8 \)

<table>
<thead>
<tr>
<th>(r_k)</th>
<th>(n_k)</th>
<th>(p_r(r_k) = n_k/MN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_0 = 0)</td>
<td>790</td>
<td>0.19</td>
</tr>
<tr>
<td>(r_1 = 1)</td>
<td>1023</td>
<td>0.25</td>
</tr>
<tr>
<td>(r_2 = 2)</td>
<td>850</td>
<td>0.21</td>
</tr>
<tr>
<td>(r_3 = 3)</td>
<td>656</td>
<td>0.16</td>
</tr>
<tr>
<td>(r_4 = 4)</td>
<td>329</td>
<td>0.08</td>
</tr>
<tr>
<td>(r_5 = 5)</td>
<td>245</td>
<td>0.06</td>
</tr>
<tr>
<td>(r_6 = 6)</td>
<td>122</td>
<td>0.03</td>
</tr>
<tr>
<td>(r_7 = 7)</td>
<td>81</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Example 3.5 in book
Example (continued)

- Excel spreadsheet

<table>
<thead>
<tr>
<th>r</th>
<th>H[r]</th>
<th>p[r]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>790</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1023</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>850</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4096</td>
<td></td>
</tr>
</tbody>
</table>
Example (continued)

• To calculate histogram of transformed image $H_s(s)$:
 - For each value of s
 • Find values of r where $s = T(r)$
 • Sum $H_r(r)$ for those values

• Example:
 - Take $s=6$
 - $T(r) = 6$ for $r=3,4$
 - $H_s(6) = H_r(3) + H_r(4)$
 = $656 + 329 = 985$

• Excel spreadsheet
 - Use “SUMIF” formula
 = SUMIF(range-to-test, cell-to-check-if-equal, cells-to-sum)
Manual Histogram Equalization - Example

<table>
<thead>
<tr>
<th>r</th>
<th>H(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>
Adaptive (Local) Histogram Equalization

• Divide image into rectangular subregions (or “tiles”), do histogram equalization on each

• To avoid “blocky” appearance:
 – Make tiles overlapping
 – Or, interpolate across tiles

• Matlab’s `adapthisteq`
 – Optional parameters
 • ‘NumTiles’ *default is [8 8]*
 • ‘ClipLimit’ (0..1; limits # pixels in a bin; higher numbers => more contrast) *default is 0.01*

• Try “liftingbody.png”
Matlab example

• Read image

\[I = \text{imread('liftingbody.png')}; \]

• Do regular histogram equalization and adaptive histogram equalization

\[I_{eq} = \text{histeq}(I); \]
\[I_{adapteq} = \text{adapthisteq}(I); \]

• Display results
 – “subplot” allows you to put multiple images in a single figure

\[\text{subplot(1,3,1), imshow(I,[]); % row, cols, index} \]
\[\text{subplot(1,3,2), imshow(I_{eq},[]); % row, cols, index} \]
\[\text{subplot(1,3,3), imshow(I_{adapteq},[]); % row, cols, index} \]
Summary / Questions

• Gray level transformations map each input intensity value to an output intensity value.

• We can use these transformations to improve the contrast in an image.

• Why is it desirable to have a flat histogram in the output image?