Final Project Presentations
Presentations

• Presentations on Monday Dec 7 and Wednesday Dec 9
  – Class will go longer (~6:30)

• About 10 minutes total per person
  – ~8 minutes for presentation
  – Remainder for questions

• Use the projector
  – Email me your slides in advance
  – Powerpoint or pdf is ok

• Project reports are due 12/14 (via email to me)
Content of Presentations and Reports

• You can use the same outline for each.

• Presentations will necessarily be shorter and not as detailed.
  – In the presentation, focus on the most interesting, challenging, or important aspects.

• See course website (http://inside.mines.edu/~woff/courses/EENG510/projects/) for additional details.

• Describe your project in such a manner that a person who is familiar with the class material, but not your specific topic (i.e., other students in the class), can follow your description.
Outline

• Should include:
  – Introduction
    • Topic, motivation, problem domain, assumptions
  – Discussion of previous work (this can be incorporated in the introduction, or in a separate section)
    • Describe previous works briefly and give some explanation of how they fit your topic, is relevant, or is deficient, etc.
  – Detailed description
    • Describe the algorithms you used, implementation, and testing procedures
  – Experiments and results
    • Show and describe images, data, results.
    • Put quantitative results in tables or graphs, using statistics wherever possible
  – Discussion
    • Achievements, limitations, and possible future work
    • Where does it work well, and where does it fail? What would be needed to improve the results?
  – (In the report, a list of papers cited in the text)
Monday Dec 7
• Nathaniel Lane, Video Compression Techniques
• Jonathan Melton, Asteroid Detection
• Steve Borenstein, Ellipse Targeting in 3D
• Kyle Patel, Fractal Image Compression
• Teal Hobson-Lowther, Classification Methods for Human Activity Recognition
• Garret Hoch, Document Layout Analysis
• Gilchrist Day, Analog Gauge Reading
• Scott Harris, Automatic Dart Board Scoring

Wednesday Dec 9
• Michael Sleevi, Image Guided Inversion
• Tim Taylor, Reflection Removal using Ghosting Cues
• Zachary Zembower, Super Resolution on 2.5D Data
• Kyle Dymowski, DNA Origami Machines and Mechanisms (DOMM) Image Analysis
• Jessica Gillan, Identification of Hand Written Simple Mathematical Equations
• Ryan Beethe, Use of Bilateral Filters in Stereo Vision
• Thu Bui, Wavelet analysis of Well-Logging Data
• Thomas Rapstine, Effects of color band choice on motion magnification results

Let me know if you want a different title