Colorado School of Mines

Computer Vision

Professor William Hoff
Dept of Electrical Engineering & Computer Science
http://inside.mines.edu/~whoff/
Introduction to Computer Vision
What is Computer Vision?

• A process that produces from images of the external world a description that is useful to the viewer and not cluttered with irrelevant information (Marr)

• Construction of explicit, meaningful descriptions of physical objects from images (Ballard and Brown)

• To make useful decisions about real physical objects and scenes based on sensed images (Shapiro and Stockman)
Related Field – Image Processing

• Image Processing
 – Image in, image out
 – Usually low level techniques (eg, compression, edge detection)
 – Quantitative measurements

• Computer Vision
 – Extracting symbolic descriptions
 – Higher level techniques (eg, object recognition)
 – Semantic (quantitative or qualitative) output

• Image processing techniques are often used in computer vision

• The definitions are not firm - there is overlap between the fields

Example of median filtering, from Digital Image Processing, by Gonzalez and Woods
Related fields - continued

• Pattern recognition
 – Recognition of patterns (classification)
 – Inputs often represented as feature vectors
 – Techniques useful for 2D and constrained 3D image recognition problems, but usually too limited for general 3D problems

• Photogrammetry
 – Concerned with accurately measuring properties from images
 – An older field - historically focused on remote sensing (e.g., images from airplanes or satellites)
 – Computer vision concerned with more than just measuring
 – However, many techniques are the same or similar
Related field - Computer Graphics

• Computer vision is the inverse of computer graphics

3D Models of objects, locations
Lighting information
Camera parameters

• The forward process is unique, the inverse process is not!

http://www.matthewdoucette.com/renderedgraphics
http://www.balletwest.org/blog/2009/02/08/a-post-from-allison-debona/
Although easy for people, vision is difficult for computers

- Objects can be highly variable in shape
 - E.g., trees, cars, animals, ...
- Loss of information in sensing process
 - 3D objects projected onto 2D images
- Missing data
 - Occlusions and hidden surfaces
 - Shadows and noise obscure signal
- Confounding effects
 - Observed color may be due to object albedo or scene lighting
Approach to Solution

• Apply assumptions and *a priori* knowledge to recover the most likely description

• Use knowledge of object shape and the lighting that is present (if available)

• Use information from multiple images (stereo, motion sequences)

• Guess based on cues
 – Shading, texture, geometry
 – Knowledge about typical real world objects
Optical Illusions

• Human visual system is good at picking out structure from noisy, incomplete, and missing data

• We make and use assumptions about the real world to do this

• Optical illusions occur when these assumptions are incorrect

Subjective contours

dragon.uml.edu/psych/kaniza.html
Optical Illusions

FEET

FEET
Optical Illusions
Optical Illusions

- Perception of shape depends on context
Optical Illusions

• Perception of shape depends on context
Optical Illusions

• The influence of 3D interpretation
Optical Illusions

• The influence of shading

A raised cone?
A crater depression?
Optical Illusions

• Color perception

Which square is darker, A or B?

Answer – they have the same color
Optical Illusions

• 2D->3D ambiguity
Optical Illusions

Are the horizontal lines parallel or do they slope?
A difficult image interpretation problem
Example Application Areas

- Industrial inspection
 - Find known objects in the scene
 - Measure dimensions, verify features

- Optical character recognition
 - Processing scanned text pages
 - Detect and identify characters
Example Application Areas

- Medical modeling
 - Surgical planning and navigation

- Robotic vehicle navigation
 - Estimate motion and position of vehicle
 - Detect and model obstacles
 - Find safe path through environment

Modeling bones from biplanar X-ray images (Hoff, King)
CAST
Convoy Active Safety Technology

Proven Features
• Five-Vehicle Convos
• Integrated FMTV & M915
• POV Incursion Handling
• Dynamic Obstacle Detection
• Governed Column Intervals
• Limited Visibility Operation
• Night-Vision Driving Ready
• Split and Rejoin Handling
• 50 mph on Paved Roads
• 35 mph on Dirt Roads
• Single Button Operation

CAST Performance
• 25% More Targets Identified and 10m Further Away
• 85% Improvement in Emergency Brake Response
• 87% Reduction in Governed Interval Distance Error

Convoy Active Safety Technology (CAST)
A Kit-Based, Platform-Independent and Cost-Effective Convoy Automation System
The AutoMate™ sensor and actuator kit enables CAST to be an agile, versatile and survivable sustainment system of multi-vehicle convoys which are ready, reliable and secure. With the need for a low-cost multi-vehicle autonomous convoy capability, our goal is to design, demonstrate and deploy a system that is capable of both lateral and longitudinal control of various tactical wheeled vehicles relative to a lead vehicle in order to improve convoy safety, security, survivability and sustainment. Our system has been shown to significantly reduce crew fatigue, eliminate rear-end collisions, enhance operator situational awareness and enable a more effective response to attack.

System Capabilities
Example Application Areas

• Scene modeling
 – Find and identify objects (ships, buildings, roads)
 – Create models of scenes from multiple images

http://www.ai.sri.com/project/BADD

Paul Debevec and Jitendra Malik
Example Application Areas

• Target recognition
 – Find enemy vehicles (which are trying not to be found!)

• Human Interfaces
 – Detect faces and identify people
 – Recognize gestures, activities

FLIR image from sdvision.kaist.ac.kr/
SAR image from web.mit.edu/6.003/courseware/
Example Application Areas

- Augmented reality
 - Augment the real world with virtual objects

- Robotics
 - Recognize objects
 - Estimate motion and position

John Steinbis, CSM MS thesis

http://www.robocup.org/
Software

• Matlab – we will use this primarily
 – Commercial package (but only $99 for students)
 – Interpreted language – easy to prototype
 – Image processing toolbox; user contributed toolboxes

• OpenCV – we will use occasionally
 – Free
 – C/C++; good for real time applications

• Many applications have simple image editing functions
 – Photoshop
 – iPhoto
 – ImageJ
 – GIMP
Good Resources

• Some key journals
 – IEEE Trans. Pattern Analysis & Machine Intelligence
 – Int’l Journal of Computer Vision

• Some key conferences
 – Computer Vision and Pattern Recognition (CVPR)
 – Int’l Conference on Computer Vision (ICCV)

• Some good websites

• Getting papers
 – CSM library e-journal collection
 – CiteSeerx - http://citeseerx.ist.psu.edu/
 – Google Scholar