SIFT-Based Object Recognition
SIFT-Based Object Recognition

• SIFT
 – “Scale-invariant feature transform”

• Training phase
 – We have one or more training images of an object
 – We extract SIFT features from the images and put them into a database

• Testing phase
 – We extract SIFT features from a test image
 – We match them to the features in the database
 – We find a subset of matches that may be mutually consistent with one of the training images
 – We calculate a transformation from the training image to the test image ... if all matches are consistent, we have found the object
SIFT – Scale Invariant Feature Transform

• Approach:
 – Create a scale space of images
 • Construct a set of progressively Gaussian blurred images
 • Take differences to get a “difference of Gaussian” pyramid (similar to a Laplacian of Gaussian)
 – Find local extrema in this scale-space. Choose keypoints from the extrema
 – For each keypoint, in a 16x16 window, find histograms of gradient directions
 – Create a feature vector out of these
SIFT Software

• Matlab code
 – http://www.vlfeat.org
 – Download and put in a directory (such as
 C:\Users\whoff\Documents\Research\SIFT\vlfeat-0.9.18)
 – At the Matlab prompt,
 run('C:\Users\whoff\Documents\Research\SIFT\vlfeat-0.9.18\toolbox\vl_setup');

• Main functions
 – vl_sift – extract SIFT features from an image
 – vl_ubcmatch – match two sets of SIFT features

• Also useful
 – vl_plotframe – overlay SIFT feature locations on an image
 – vl_plotsiftdescriptor – overlay SIFT feature details on an image
Example Images

A “test” image

Note – in practical applications you would want multiple training images of each object, from different viewpoints

Original source of images:
http://www.computing.dundee.ac.uk/staff/jessehoey/teaching/vision/project1.html
Extract SIFT features

- Function call
 \[
 [f,d] = \text{vl}_\text{sift}(I)
 \]
- Returns
 - Arrays \(f(4,N), d(128,N) \), where \(N \) is the number of features
 - \(f(1:4,i) \) is \((x,y,\text{scale},\text{angle})\) for the \(i \)th feature
 - \(d(1:128,i) \) is the 128-element descriptor for the \(i \)th feature

```matlab
I1 = imread('images/book1.pgm');
I1 = single(I1);  % Convert to single precision floating point
if size(I1,3)>1     I1 = rgb2gray(I1);  end
imshow(I1,[]);
% These parameters limit the number of features detected
peak_thresh = 0;   % increase to limit; default is 0
edge_thresh = 10;  % decrease to limit; default is 10
[f1,d1] = vl_sift(I1, ...    
    'PeakThresh', peak_thresh, ...
    'edgethresh', edge_thresh );
fprintf('Number of frames (features) detected: %d\n', size(f1,2));

% Show all SIFT features detected
h = vl_plotframe(f1) ;
set(h,'color','y','linewidth',2) ;
```
Number of frames (features) detected: 1815
Display one feature

```matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Visualize one feature only
i = 100; % pick any feature
fprintf('Feature index %d\n', i);
disp('(x,y,scale,angle): '); disp(f1(:,i));
disp('Descriptor: '); disp(d1(:,i));

% Display that feature
figure, imshow(I1,[]);
h = vl_plotframe(f1(:,i));
set(h,'color','y','linewidth',2);

pause

h = vl_plotsiftdescriptor(d1(:,i),f1(:,i));
set(h,'color','g');
```
Feature index 100 (x,y,scale,angle):
44.9308
393.9326
2.1388
-4.3216
Descriptor:
66
40
13
6
4
4
8
32
19
8
2
28
110
61
4
12
23
50
69
37
58
28
3
7
:
% Second image
I2 = single(imread('images/Img01.pgm'));
if size(I2,3)>1 I2 = rgb2gray(I2); end
figure, imshow(I2,[]);

% These parameters limit the number of features detected
peak_thresh = 0; % increase to limit; default is 0
edge_thresh = 10; % decrease to limit; default is 10

[f2,d2] = vl_sift(I2, ...
 'PeakThresh', peak_thresh, ...
 'edgethresh', edge_thresh);
fprintf('Number of frames (features) detected: %dn', size(f2,2));

% Show all SIFT features detected
h = vl_plotframe(f2) ;
set(h,'color','y','linewidth',2) ;
Number of frames (features) detected: 1108
Match SIFT features

• Function call

 \[
 \text{[matches, scores] = vl_ubcmatch(d1, d2);}
 \]

• Returns

 – **Arrays:** \text{matches(2,M), scores(M), where M is the number of matches}
 – \text{matches(1:2,i) are the indices of the features for the ith match}
 – \text{scores(i) is the squared Euclidean distance between the features}

```plaintext
% Threshold for matching
% Descriptor D1 is matched to a descriptor D2 only if the distance \(d(D1,D2)\)
% multiplied by THRESH is not greater than the distance of D1 to all other
% descriptors
thresh = 2.0;  % default = 1.5; increase to limit matches
[matches, scores] = vl_ubcmatch(d1, d2, thresh);
fprintf('Number of matching frames (features): %d\n', size(matches,2));

indices1 = matches(1,:);    % Get matching features
f1match = f1(:,indices1);
d1match = d1(:,indices1);

indices2 = matches(2,:);
f2match = f2(:,indices2);
d2match = d2(:,indices2);
```
Display matches

- These are potential matches, based on similarity of local appearance
- Many may be incorrect
- There is no notion (yet) of mutual consistency

```matlab
% Show matches
figure, imshow([I1, I2], []);
o = size(I1, 2);
line([f1match(1,:); f2match(1,:)+o], ... [f1match(2,:); f2match(2,:)])

for i=1:size(f1match,2)
    x = f1match(1,i);
    y = f1match(2,i);
    text(x, y, sprintf('%d', i), 'Color', 'r');
end

for i=1:size(f2match,2)
    x = f2match(1,i);
    y = f2match(2,i);
    text(x+o, y, sprintf('%d', i), 'Color', 'r');
end
```
Number of matching frames (features): 25
Consistency

• We want to find a consistent subset of matches
 – It is consistent if we can derive a rigid transformation that aligns the two sets of features, with low error residual

• How to find this subset?
 – We could use RANSAC
 – But RANSAC doesn’t work well if we have a lot of outliers

• Instead we will use clustering (Hough transform)
 – Potential matches vote for poses in the space of all possible poses
 – The pose with the highest number of votes is probably correct
 – We can use those matches to calculate a more accurate transformation
Transformation

• Ideally, we would calculate the essential matrix (or fundamental) matrix that aligns the two sets of points
 – Then we could calculate a 6 DOF pose transformation
 – However, this is expensive
 • Hough space is 6 dimensional
 • We need 8 points to calculate the essential matrix

• Instead, Lowe uses a simplified transformation
 – A 2D scaled rotation, from training image to test image
 – Cheap to compute
 • Hough space is 4-dimensional (x, y, scale, angle)
 • A single feature match can vote for a transformation
 – It’s only an approximation, valid for
 • Planar patches
 • Small out-of-plane rotation
 • Scale changes and in-plane rotation ok
 – So use a coarse Hough space
 • Main purpose is to identify valid matches
 • Then calculate a more refined transformation later

1Although 8 points is needed for the linear algorithm, as few as 5 points can be used in a nonlinear algorithm
Pose Clustering

• The feature in the training image is located at \((x_1, y_1)\)
 – So the “origin” of the object in the training image is located at a vector offset of \(v_1 = (-x_1, -y_1)\) with respect to this feature

• If we find a matching feature in the test image at \((x_2, y_2)\)
 – We can apply the same offset to its location, to determine where the origin of the object is in this image
 – However, we need to scale and rotate \(v_1\), using the relative scale and angle of the feature

• Consistent matches should vote for
 – The same relative scale and angle
 – The same location of the object origin in the test image
Scale and Rotation

• Given
 – \((x_1,y_1,a_1,s_1)\) from image 1
 – \((x_2,y_2,a_2,s_2)\) from image 2

• Let
 – \(v_1 = (-x_1,-y_1)^T\)
 – \(sr = s_1/s_2\) % scale ratio
 – \(da = a_1 - a_2\) % difference in angles \((-\pi..\pi)\)

• Then
 – \(v_2 = R \cdot (v_1/sr)\)
 – where \(R\) is the rotation matrix

\[
R = \begin{pmatrix}
\cos(da) & \sin(da) \\
-\sin(da) & \cos(da)
\end{pmatrix}
\]
% Between all pairs of matching features, compute
% orientation difference, scale ratio, and center offset
allScales = zeros(1,size(matches,2)); % Store computed values
allAngs = zeros(1,size(matches,2));
al1X = zeros(1,size(matches,2));
al1Y = zeros(1,size(matches,2));
for i=1:size(matches, 2)
 fprintf('Match %d: image 1 (scale,orient = %f,%f) matches', ...
 i, f1match(3,i), f1match(4,i));
 fprintf(' image 2 (scale,orient = %f,%f)\n', ...
 f2match(3,i), f2match(4,i));
 scaleRatio = f1match(3,i)/f2match(3,i);
 dTheta = f1match(4,i) - f2match(4,i);

 % Force dTheta to be between -pi and +pi
 while dTheta > pi dTheta = dTheta - 2*pi; end
 while dTheta < -pi dTheta = dTheta + 2*pi; end

 allScales(i) = scaleRatio;
 allAngs(i) = dTheta;

 x1 = f1match(1,i); % the feature in image 1
 y1 = f1match(2,i);
 x2 = f2match(1,i); % the feature in image 2
 y2 = f2match(2,i);

 % The "center" of the object in image 1 is located at an offset of
 % (-x1,-y1) relative to the detected feature. We need to scale and rotate
 % this offset and apply it to the image 2 location.
 offset = [-x1; -y1];
 offset = offset / scaleRatio; % Scale to match image 2 scale
 offset = [cos(dTheta) +sin(dTheta); -sin(dTheta) cos(dTheta)]*offset;

 al1X(i) = x2 + offset(1);
 al1Y(i) = y2 + offset(2);
end

figure, plot(allScales, allAngs, '.'), xlabel('scale'), ylabel('angle');
figure, plot(al1X, al1Y, '.'), xlabel('x'), ylabel('y');
Match 1: image 1 (scale,orient = 1.894783,-0.044264) matches image 2 (scale,orient = 3.551687,0.522674)
Match 2: image 1 (scale,orient = 2.163606,0.128328) matches image 2 (scale,orient = 1.954872,-4.457478)
Match 3: image 1 (scale,orient = 2.145491,0.112939) matches image 2 (scale,orient = 1.954872,-4.457478)
Match 4: image 1 (scale,orient = 1.916563,-3.108768) matches image 2 (scale,orient = 3.551687,0.522674)
Match 5: image 1 (scale,orient = 1.965406,0.246489) matches image 2 (scale,orient = 3.927825,-4.683675)
Match 6: image 1 (scale,orient = 2.560005,0.005285) matches image 2 (scale,orient = 3.551687,0.522674)
Match 7: image 1 (scale,orient = 2.686433,-0.029147) matches image 2 (scale,orient = 3.551687,0.522674)
Match 8: image 1 (scale,orient = 2.392902,-1.619281) matches image 2 (scale,orient = 2.868815,-4.306330)
Match 9: image 1 (scale,orient = 2.442557,-2.274752) matches image 2 (scale,orient = 3.927825,-4.683675)
Match 10: image 1 (scale,orient = 2.531784,-3.022190) matches image 2 (scale,orient = 1.954872,-4.457478)
Match 11: image 1 (scale,orient = 2.314712,-2.976338) matches image 2 (scale,orient = 3.551687,0.522674)
Match 12: image 1 (scale,orient = 3.087177,-0.008857) matches image 2 (scale,orient = 3.551687,0.522674)
Hough Transform

• Use a 4-D pose space
 – Dimensions are (angle, scale, x, y)
 – Have coarse bins
 • Angles are $-\pi .. \pi$, by increments of $\pi/4$
 • Scales are 0.5 .. 10 by increments of 2.0
 • x is 1..N by increments of $W/5$
 • y is 1..N by increments of $H/5$

• Use coarse bins because
 – Fast
 – Transformation is only approximate anyway

• Note
 – Lowe recommends also voting for neighboring bins
 – Mitigates problem with boundary effects
% Use a coarse Hough space.
% Dimensions are [angle, scale, x, y]
% Define bin centers
aBin = -pi:(pi/4):pi;
sBin = 0.5:(2):10;
xBin = 1:(size(I2,2)/5):size(I2,2);
yBin = 1:(size(I2,1)/5):size(I2,1);

H = zeros(length(aBin), length(sBin), length(xBin), length(yBin));
for i=1:size(matches, 2)
 a = allAngs(i);
 s = allScales(i);
 x = allX(i);
 y = allY(i);

 % Find bin that is closest to a,s,x,y
 [~, ia] = min(abs(a-aBin));
 [~, is] = min(abs(s-sBin));
 [~, ix] = min(abs(x-xBin));
 [~, iy] = min(abs(y-yBin));

 H(ia,is,ix,iy) = H(ia,is,ix,iy) + 1; % Inc accumulator array
end

% Find all bins with 3 or more features
[ap,sp,xp,yp] = ind2sub(size(H), find(H>=3));

fprintf('Peaks in the Hough array:
');
for i=1:length(ap)
 fprintf('%d: %d points, (a,s,x,y) = %f,%f,%f,%f
', ...
 i, H(ap(i), sp(i), xp(i), yp(i)), ...
 aBin(ap(i)), sBin(sp(i)), xBin(xp(i)), yBin(yp(i)));
end
Peaks in the Hough array:
1: 4 points, \((a,s,x,y) = -0.785398,0.500000,385.000000,1.000000\)
2: 3 points, \((a,s,x,y) = -1.570796,0.500000,513.000000,1.000000\)
3: 7 points, \((a,s,x,y) = 0.000000,6.500000,257.000000,193.000000\)
4: 3 points, \((a,s,x,y) = 2.356194,0.500000,513.000000,385.000000\)

```
>> size(H)
ans =
  9   5   5   5

>> H(:, :, 3, 3)
ans =
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     7     0
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     0     0
      0     0     0     0     0
```
• Get features corresponding to largest bin
 – Of course, if there are multiple instances of the object, you should look at multiple bins

```matlab
% Get the features corresponding to the largest bin
nFeatures = max(H(:));  % Number of features in largest bin
fprintf('Largest bin contains %d features\n', nFeatures);
[ap,sp,xp,yp] = ind2sub(size(H), find(H == nFeatures));
indices = [];  % Make a list of indices
for i=1:size(matches, 2)
    a = allAngs(i);
    s = allScales(i);
    x = allX(i);
    y = allY(i);

    % Find bin that is closest to a,s,x,y
    [~, ia] = min(abs(a-aBin));
    [~, is] = min(abs(s-sBin));
    [~, ix] = min(abs(x-xBin));
    [~, iy] = min(abs(y-yBin));

    if ia==ap(1) && is==sp(1) && ix==xp(1) && iy==yp(1)
        indices = [indices i];
    end
end
fprintf('Features belonging to highest peak:\n');
disp(indices);
```
Display matches corresponding to largest bin

```matlab
figure, imshow([I1,I2],[]);
o = size(I1,2);
line([f1match(1,indices);f2match(1,indices)+o], ...'Color', 'r');
for i=1:length(indices)
    x = f1match(1,indices(i));
    y = f1match(2,indices(i));
    text(x,y,sprintf('%d',indices(i)), 'Color', 'r');
end
for i=1:length(indices)
    x = f2match(1,indices(i));
    y = f2match(2,indices(i));
    text(x+o,y,sprintf('%d',indices(i)), 'Color', 'r');
end
```
Largest bin contains 7 features
Features belonging to highest peak:
19 20 21 22 23 24 25
Affine Transform

• Finally, fit a 2D affine transformation to the potential set of correct matches (≥3)

• This will give a better approximation to the true 6 DOF transform, than the initial scaled-rotation transform found by Hough

• Checking residual errors also allows us to make sure matches are correct

• A 2D affine transform is valid for
 – Planar patches undergoing small out-of-plane rotation
 – In-plane rotation and scale changes are ok

\[
\begin{bmatrix}
 x_B \\
 y_B \\
 1
\end{bmatrix} = \begin{bmatrix}
 a_{11} & a_{12} & t_x \\
 a_{21} & a_{22} & t_y \\
 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 x_A \\
 y_A \\
 1
\end{bmatrix}
\]

• Notes
 – You could detect outliers and throw them out
 – If more points are available you might fit an essential matrix
% Fit an affine transformation to those features.
% We use affine transformation because the image of a planar surface
% undergoing a small out-of-plane rotation can be approximated by an
% affine transformation.

% Create lists of corresponding points pA and pB.
pA = [f1match(1,indices); f1match(2,indices)];
pB = [f2match(1,indices); f2match(2,indices)];
N = size(pA,2);

% Calculate the transformation T from I1 to I2; ie p2 = T p1.
A = zeros(2*N,6);
for i=1:N
 A(2*(i-1)+1, :) = [pA(1,i) pA(2,i) 0 0 1 0];
 A(2*(i-1)+2, :) = [0 0 pA(1,i) pA(2,i) 0 1];
end
b = reshape(pB, [], 1);
x = A\b;
T = [x(1) x(2) x(5);
 x(3) x(4) x(6);
 0 0 1];
fprintf('Derived affine transformation:
');
disp(T);

r = A*x-b; % Residual error
ssr = sum(r.^2); % Sum of squared residuals

% Estimate the error for each image point measurement.
% For N image points, we get two measurements from each, so there are 2N
% quantities in the sum. However, we have 6 degrees of freedom in the result.
sigmaImg = sqrt(ssr/(2*N-6)); % Estimated image std deviation
fprintf('#pts = %d, estimated image error = %f pixels
', N, sigmaImg);
Derived affine transformation:

\[
\begin{bmatrix}
0.1820 & -0.0435 & 246.0450 \\
0.0462 & 0.1701 & 235.7885 \\
0 & 0 & 1.0000
\end{bmatrix}
\]

#pts = 7, estimated image error = 0.295452 pixels
% Ok, apply the transformation to image 1 to align it to image 2.
% We'll use Matlab's imtransform function.
tform = maketform('affine', T);
I3 = imtransform(I1,tform, ...
 'XData', [1 size(I1,2)], 'YData', [1 size(I1,1)]);
figure, imshow(I3, []);

% Overlay the images
RGB(:,:,1) = (I2+I3)/2;
RGB(:,:,2) = (I2+I3)/2;
RGB(:,:,3) = I2/2;
RGB = uint8(RGB);
figure, imshow(RGB);
Some Simplifications

• I only used a single training image of each object; should really have images from multiple viewing angles

• Only looked for a single object from the database

• Only looked for a single instance of the object

• Hough transform: I voted for single bin instead of neighboring bins

• Computed affine transformation only for verification, instead of essential matrix

• I implemented full 4-D Hough array; Lowe uses hash table for speed