First principles studies of multiferroic materials

Claude Ederer
School of Physics, Trinity College Dublin
edererc@tcd.ie
Overview

1) Introduction to multiferroic materials
 • Why first principles calculations?
2) Density functional theory
3) Examples:
 a) BiFeO$_3$
 • Electric polarization
 • Strain dependence
 • Coupling between polarization and magnetism?
 • Computational design of new multiferroic materials
 b) Other examples...
What is a multiferroic?

Hans Schmid: “A material that combines two (or more) of the primary ferroic order parameters in one phase”

Important:
- switchable domains (change in point symmetry)
- not necessarily coupled!

In practice often:
multiferroic = (anti-)ferromagnetic + ferroelectric = magnetic ferroelectric
What is a multiferroic?
Hans Schmid: “A material that combines two (or more) of the primary ferroic order parameters in one phase”

Important:
- switchable domains (change in point symmetry)
- not necessarily coupled!

In practice often:
multiferroic = (anti-)ferromagnetic + ferroelectric = magnetic ferroelectric

Related but different: **magneto-electric effect**
(electric field induces magnetization, magnetic field induces electric polarization)

\[
F(E, H) = F_0 - P_i^S E_i - M_i^S H_i - \frac{1}{2} \varepsilon_{ij} E_i E_j - \frac{1}{2} \mu_{ij} H_i H_j
- \alpha_{ij} E_i H_j - \frac{1}{2} \beta_{ijk} E_i H_j H_k - \frac{1}{2} \gamma_{ijk} H_i E_j E_k + \ldots
\]
Magneto-electric multiferroics

Magneto-electric multiferroics = ferromagnetic + ferroelectric

- Ferromagnetic:

- Ferroelectric:

The University of Dublin | Trinity College
Ollscoil Átha Cliath | Coláiste na Trionóide

First principles studies of multiferroic materials
Magneto-electric multiferroics

Magneto-electric multiferroics = ferromagnetic + ferroelectric

- Ferromagnetic:

- Ferroelectric:

- Domains:

- Hysteresis:

Non-volatile data-storage!
Magneto-electric multiferroics

- Coexistence of ferroelectric, ferroelastic and magnetic order

→ Interesting cross-correlations between polarization, magnetization, and strain!

Possible Applications:
- magneto-electric RAM (electric write/magnetic read)
- four-state memory
- ...
Some history

History of magnetoelectric (ME) effect

1894: First conjecture about ME effect by Pierre Curie

1956: Landau/Lifshitz formulate symmetry requirements for ME effect (concept of time reversal symmetry)

1959: Dzyaloshinskii predicts ME effect in Cr$_2$O$_3$

1960: Experimental confirmation by Astrov (ME)$_E$

1961: Reciprocal (ME)$_H$ effect measured by Rado et al.

But: small effects, mostly low temperatures, scarcity of materials, lack of microscopic understanding

Recently: improved theoretical understanding, thin film preparation, new experimental techniques

Known magnetic ferroelectrics:

1961: Smolenskii et al.: mixed perovskites (e.g. Pb(Fe$_{2/3}$W$_{1/3}$)O$_3$, Pb(Fe$_{1/2}$Nb$_{1/2}$)O$_3$)

1963: Smolenskii/Kiselev: BiFeO$_3$

1963: Bertaut et al.: hexagonal $RMnO_3$ (e.g. YMnO$_3$, HoMnO$_3$)

1966: Ascher/Schmid: Boracites $M_3B_7O_{13}X$ (e.g. Ni$_3$B$_7O_{13}I$)

1968: Eibschuetz/Guggenheim et al.: BaMF$_4$ (e.g. BaMnF$_4$, BaNiF$_4$)
Recent boom

Epitaxial BiFeO$_3$ Multiferroic Thin Film Heterostructures

→ Large polarization and (small) magnetization above room temperature

letters to nature

Magnetic control of ferroelectric polarization

→ Small Polarization created by non-centrosymmetric magnetic order
Classification of magnetic ferroelectrics

1) Ferroelectricity independent of magnetism
 - Boracites: \(\text{Ni}_3\text{B}_7\text{O}_{13}\text{I}, \text{Ni}_3\text{B}_7\text{O}_{13}\text{Cl}, \text{Co}_3\text{B}_7\text{O}_{13}\text{I} \), ...
 - “Doped” multiferroics: \(\text{Pb(Fe}_{2/3}\text{W}_{1/3})\text{O}_3, \text{Pb(Fe}_{1/2}\text{Nb}_{1/2})\text{O}_3 \), ...
 - “Lone pair” ferroelectrics: \(\text{BiFeO}_3, \text{BiMnO}_3, \) ...
 - “Geometric” ferroelectrics
 - proper: \(\text{BaMF}_4 \) (\(M=\text{Mn, Fe, Co, Ni} \))
 - improper: \(\text{Y MnO}_3, \text{HoMnO}_3, \) ... (hexagonal manganites)

2) Ferroelectricity induced by ...
 - ...magnetic order: \(\text{Tb MnO}_3, \text{Tb Mn}_2\text{O}_5, \text{Ni}_3\text{V}_2\text{O}_8, \text{Cu FeO}_2, \text{CoCr}_2\text{O}_4, \) ...
 - ...charge order”: \(\text{LuFe}_2\text{O}_4, \text{Pr}_{1-x}\text{Ca}_x\text{MnO}_3 \) (?)

One multiferroic is not necessarily equal to another multiferroic!
Why first principles calculations?

First principles: start directly from fundamental laws of Physics, without model assumptions or fitting parameters

- Diverse materials science requires a theoretical approach that is able to resolve differences between different materials
- Provide reference values for experimental data (make predictions)
- Rationalize experimental observations
1) Introduction to multiferroic materials
 - Why first principles calculations?

2) Density functional theory

3) Examples:
 a) BiFeO$_3$
 - Electric polarization
 - Strain dependence
 - Coupling between polarization and magnetism?
 - Computational design of new multiferroic materials
 b) Other examples...
Density functional theory

Interacting many-body problem:

Effective single particle problem:

\[V_{\text{eff}} = V_H + V_{\text{ion}} + V_{\text{xc}} \]

- Facilitates quantitative predictions of materials properties
- Provides powerful analysis-tool for electronic structure

Hohenberg/Kohn 1964, Kohn/Sham 1965, Nobel Prize in Chemistry 1998 for Walter Kohn

Claude Ederer
First principles studies of multiferroic materials
The problem:

\[\hat{H} = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_{i,I} \frac{Z_i e^2}{|\vec{r}_i - \vec{R}_I|} + \frac{1}{2} \sum_{i,j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} \]

Effort to calculate \(\Psi(\vec{r}_1, \ldots, \vec{r}_N) \) increases exponentially with N
→ only possible for small molecules (N \(\sim \) 10)
The Hohenberg-Kohn Theorems

The problem: \[\hat{H} = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 + \sum_{i,I} \frac{Z_i e^2}{|\vec{r}_i - \vec{R}_I|} + \frac{1}{2} \sum_{i,j} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} \]

Effort to calculate \(\Psi(\vec{r}_1, \ldots, \vec{r}_N) \) increases exponentially with \(N \)
\(\rightarrow \) only possible for small molecules (\(N \sim 10 \))

Hohenberg/Kohn 1964:

- All ground state properties of an interacting many-electron system are uniquely determined by the electron density \(n(\vec{r}) \)
- The correct ground state density minimizes the total energy functional

\[E[n] = T[n] + \int d^3 r V_{\text{ext}}(\vec{r})n(\vec{r}) + \int d^3 r d^3 r' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} + E_{\text{xc}}[n] \]

Density replaces many-body wavefunction as central quantity of interest

But how to obtain the density?
The Kohn-Sham equations

Idea (Kohn/Sham 1965): construct density from auxiliary non-interacting system with the same ground state density

Interacting system: \[E[n] = T[n] + \int d^3 r V_{\text{ext}}(\vec{r}) n(\vec{r}) + \int d^3 r d^3 r' \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|} + E_{xc}[n] \]

Non-interacting system: \[E[n] = T[n] + \int d^3 r V_{\text{eff}}(\vec{r}) n(\vec{r}) \]

\[\frac{\delta E[n]}{\delta n(\vec{r})} = 0 \quad \rightarrow \quad V_{\text{eff}} = V_{\text{ext}} + \int d^3 r' \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\delta E_{xc}[n]}{\delta n(\vec{r})} \]
The Kohn-Sham equations

Idea (Kohn/Sham 1965): construct density from auxiliary non-interacting system with the same ground state density

Interacting system:
\[E[n] = T[n] + \int d^3r V_{\text{ext}}(\vec{r})n(\vec{r}) + \int d^3rd^3r' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} + E_{\text{xc}}[n] \]

Non-interacting system:
\[E[n] = T[n] + \int d^3r V_{\text{eff}}(\vec{r})n(\vec{r}) \]

\[\frac{\delta E[n]}{\delta n(\vec{r})} = 0 \quad \rightarrow \quad V_{\text{eff}} = V_{\text{ext}} + \int d^3r' \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} + \frac{\delta E_{\text{xc}}[n]}{\delta n(\vec{r})} \]

\[\left(-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}[n(\vec{r})] \right) \phi_i(\vec{r}) = \epsilon_i \phi_i(\vec{r}) \]

\[n(\vec{r}) = \sum_{i, \text{occ}} \phi_i^*(\vec{r}) \phi_i(\vec{r}) \]

Still missing: expression for \(E_{\text{xc}}[n(\vec{r})] \)
The local density approximation (LDA)

\[E_{xc} = \int d^3r n(\vec{r}) \epsilon_{xc}(n(\vec{r})) \]

Expected to be good for not slowly varying densities.

Exchange-correlation energy density of a homogeneous electron gas of density \(n \)
The local density approximation (LDA)

\[E_{xc} = \int d^3r n(\vec{r}) \epsilon_{xc}(n(\vec{r})) \]

Exchange-correlation energy density of a homogeneous electron gas of density \(n \)

Expected to be good for not slowly varying densities.

Extremely successful!
The local density approximation (LDA)

\[E_{xc} = \int d^3 r n(\vec{r}) \epsilon_{xc}(n(\vec{r})) \]

Exchange-correlation energy density of a homogeneous electron gas of density \(n \)

Expected to be good for not slowly varying densities.

Extremely successful!

Problems:
- Underestimates band gaps in many semiconductors
- Not adequate for strongly correlated \(d \) or \(f \) electrons (eventually predicts metallic instead of insulating ground states)

→ Improved \(xc \)-functionals: Generalized Gradient Approximation (GGA), Exact exchange, hybrid functionals, GW, ...
Beyond LDA: correlated electrons

Hubbard model: \[\hat{H} = -t \sum_{i,j,\sigma} (c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

- Competition between hopping (kinetic energy) and electron-electron interaction
- Contains main physics that dominates properties of many \textit{d} and \textit{f} electron systems
- But: extremely simplified, empirical parameters
Beyond LDA: correlated electrons

Hubbard model: \[\hat{H} = -t \sum_{i,j,\sigma} (c^\dagger_{i\sigma} c_{j\sigma} + c^\dagger_{j\sigma} c_{i\sigma}) + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

- Competition between hopping (kinetic energy) and electron-electron interaction
- Contains main physics that dominates properties of many \(d \) and \(f \) electron systems
- But: extremely simplified, empirical parameters

→ Combine Hubbard-type interaction with LDA/DFT: \textbf{LDA+U} (Anisimov et al. 1991)

\[
E = E_{\text{LDA}} + E_U - E_{dc}
\]

\[
E_U = \frac{1}{2} \sum_{\{\gamma\}} (U_{\gamma_1\gamma_3\gamma_2\gamma_4} - U_{\gamma_1\gamma_3\gamma_4\gamma_2}) n_{\gamma_1\gamma_2} n_{\gamma_3\gamma_4}
\]

- Leads to correct insulating ground state for many transition metal oxides
- Important: \(U \) dependence (basis set dependent parameter), double counting term \(E_{dc} \) (shifts relative to “uncorrelated” bands)
Quantities that can be calculated

- Charge density, total energies

\[E = E\left[\{\vec{R}_I\}, n(\vec{r})\right] \rightarrow \text{energy differences between different structures, forces, phonons} \]

- Spin density for magnetic systems, energy differences between different magnetic configurations, magnetic anisotropy energies

- Single particle band-structure, electronic density of states, (zeroth approximation for electronic excitation spectra)

- Electric polarization, dielectric constants

In addition:

- Results can be analyzed in terms of fundamental quantities

- “Computer experiments”, with the possibility to control the position of each individual atom, switch off certain interactions, ...

- **Quantitative predictions** of materials properties
- **Powerful analysis-tool** for electronic structure
Overview

1) Introduction to multiferroic materials
 • Why first principles calculations?

2) Density functional theory

3) Examples:
 a) BiFeO$_3$
 • Electric polarization
 • Strain dependence
 • Coupling between polarization and magnetism?
 • Computational design of new multiferroic materials
 b) Other examples...
BiFeO$_3$: A room temperature multiferroic

Epitaxial BiFeO$_3$ Multiferroic Thin Film Heterostructures

- ferroelectric below $T_E \approx 1100$ K
- antiferromagnetic below $T_M \approx 600$ K
- Controversial results about the “spontaneous polarization”:
 - 1970: $P = 6 \ \mu$C/cm2 (single crystals) Teague et al., Solid State Comm. 8, 1073
 - 2003: $P = 60 \ \mu$C/cm2 (thin films) Wang et al., Science 299, 1719

Large P: Effect of strain, defects, impurity phases, ... ???
Electric polarization

- Finite system: \[\vec{P} = \frac{1}{V} \int d^3r \rho(\vec{r}) \vec{r} \] Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: “Modern theory of electric polarization”
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities
Electric polarization

- Finite system: \[\vec{P} = \frac{1}{V} \int d^3 r \rho(\vec{r}) \vec{r} \] Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: “Modern theory of electric polarization”
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities
Electric polarization

- Finite system: \[\vec{P} = \frac{1}{V} \int d^3 r \rho(\vec{r}) \vec{r} \]

Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: "Modern theory of electric polarization"
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities

\[P = -1 \cdot \frac{a \cdot q}{2 \cdot V} \]
Electric polarization

- Finite system: \[\bar{P} = \frac{1}{V} \int d^3 r \rho(\bar{r}) \bar{r} \]

 Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: “Modern theory of electric polarization”
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities

\[P = 3 \cdot \frac{a}{2V} \]
Electric polarization

- Finite system: \[\vec{P} = \frac{1}{V} \int d^3 r \rho(\vec{r}) \vec{r} \] Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: “Modern theory of electric polarization”
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities

\[
P = (2n + 1) \cdot \frac{a}{2} \frac{q}{V}
\]
Electric polarization

- Finite system: \[\vec{P} = \frac{1}{V} \int d^3 r \rho(\vec{r}) \hat{\vec{r}} \] Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: “Modern theory of electric polarization”
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities

\[P = (2n + 1) \cdot \frac{a}{2V} \frac{q}{2V} \]

\[P = (2n + 1) \cdot \frac{a}{2V} \frac{q}{V} - \delta \frac{q}{V} \]
Electric polarization

- Finite system: $\vec{P} = \frac{1}{V} \int d^{3}r \rho(\vec{r})\vec{r}$ — Not applicable within periodic boundary conditions (depends on unit cell choice).

King-Smith/Vanderbilt 1993, Resta 1994: "Modern theory of electric polarization"
- Polarization of a bulk solid is a multivalued quantity
- Only differences in polarization are meaningful quantities

\[P = (2n + 1) \cdot \frac{a}{2V} \cdot \frac{q}{V} \]

\[P = (2n + 1) \cdot \frac{a}{2V} \cdot \frac{q}{V} - \delta \frac{q}{V} \]

Spontaneous polarization:
\[\Delta P = -\delta \frac{q}{V} \]
BiFeO₃: Electric polarization

Polarization in bulk periodic solid:

\[P \sim \sum_n \int_{\text{BZ}} d^3k \langle u_{nk} | \frac{\partial}{\partial k} | u_{nk} \rangle \]

King-Smith/Vanderbilt 1993, Resta 1994

Problem: undistorted structure metallic in LDA → need LDA+U

Neaton, Ederer, Waghmare, Spaldin, Rabe, PRB 71, 014113 (2005)
BiFeO$_3$: Electric polarization

Polarization in bulk periodic solid:

\[P \sim \sum_n \int_{BZ} d^3 k \langle u_{nk} | \frac{\partial}{\partial k} | u_{nk} \rangle \]

King-Smith/Vanderbilt 1993, Resta 1994

Problem: undistorted structure
metallic in LDA
→ need LDA+U

Neaton, Ederer, Waghmare, Spaldin, Rabe, PRB 71, 014113 (2005)
BiFeO$_3$: Electric polarization

Polarization in bulk periodic solid:

$$P \sim \sum_n \int_{BZ} d^3k \langle u_{nk} \mid \frac{\partial}{\partial k} \mid u_{nk} \rangle$$

King-Smith/Vanderbilt 1993, Resta 1994

Problem: undistorted structure metallic in LDA
→ need LDA+U
→ evaluate polarization for intermediate distortion

Large intrinsic polarization $P_s^{(bulk)} \approx 95 \mu\text{C/cm}^2$ ($\approx P_s^{(film)}$)

Neaton, Ederer, Waghmare, Spaldin, Rabe, PRB 71, 014113 (2005)
BiFeO₃: Electric polarization

Born effective charges: \(Z^*_\alpha = \frac{V}{e} \frac{\partial P}{\partial \vec{r}_\alpha} \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(Z^*)</th>
<th>formal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi</td>
<td>+6.32</td>
<td>+3</td>
</tr>
<tr>
<td>Fe</td>
<td>+4.55</td>
<td>+3</td>
</tr>
<tr>
<td>O</td>
<td>-3.62</td>
<td>-2</td>
</tr>
</tbody>
</table>

Bi ion drives the ferroelectric distortion

See also: Seshadri/Hill: Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO₃, Chem. Mater. 13, 2892 (2001)

\[\vec{P} \approx \frac{e}{V} \sum_\alpha Z^*_\alpha \Delta \vec{r}_\alpha = 123.1 \mu C/cm^2 \]

Compare with BaTiO₃: (Ghosez/Michenaud/Gonze, PRB 58, 6224 (1998))

Ba: \(Z = 2.75 \), Ti: \(Z = 7.16 \), O: \(Z = -5.69/-2.11 \)

→ Ti drives the distortion

Neaton, Ederer, Waghmare, Spaldin, Rabe, PRB 71, 014113 (2005)
Strain effects in thin film ferroelectrics

Epitaxial thin film growth:
In-plane lattice constant determined by substrate:
→ epitaxial strain
→ can have drastic effects on ferroelectric properties

BiFeO$_3$: Effect of epitaxial strain

Strain dependence:

...but only weak effect in BiFeO$_3$

\[\Delta P = \left(\frac{2c_{31}}{n} - \frac{c_{33}}{n} \right) \varepsilon \]

c_{33}, c_{31}: piezoelectric constants
n: Poisson ratio
ε: epitaxial strain

Ederer/Spaldin PRB 71, 224103 (2005)
Ederer/Spaldin PRL 95, 257601 (2005)

Theory predictions:
- Large intrinsic bulk polarization
- Very weak epitaxial strain dependence
BiFeO$_3$: More recent experiments

![Graph](image1)

FIG. 1. (Color online) First full P-E hysteresis loop of the single crystal of BiFeO$_3$ at room temperature. The remnant polarization $P_{[012]}$ is 60 μC cm$^{-2}$ and the coercive field is 12 kV/cm. The inferred full saturation polarization along the [001]$_{hex}$ direction is close to 100 μC cm$^{-2}$. (Insert) Raw I(V) data.

![Graph](image2)

Fig. 2. (Color online) (a) In-plane ($a=b$, purple circles) and out-of-plane (c, blue squares) lattice parameters, (b) c/a ratio, and (c) P_t (red circles) and E_c (blue squares) of the BiFeO$_3$ films with varying thickness. The dotted rectangle represents the fully-strained thickness range. The dash-dotted horizontal lines are guides to the eye.

Consistent with results of first principles calculations
BiFeO$_3$: Magnetic properties

Bulk: G-type AFM + cycloidal rotation ($\lambda=640\text{nm}$)

Thin films:

Small magnetization but no cycloidal rotation (Bea et al., Phil Mag. 87, 165 (2007))

From: Lebeugle et al., PRL 100, 227602 (2008)
Weak ferromagnetism in BiFeO$_3$

Calculations show:
Antiferromagnetic sub-lattices are canted by $\approx 1^\circ$

Dzyaloshinskii-Moriya interaction (Moriya 1960):

$$E_{DM} = -\frac{1}{2} \vec{D} \cdot (\vec{M}_{Fe1} \times \vec{M}_{Fe2}) = -\vec{D} \cdot (\vec{L} \times \vec{M})$$

$$\vec{M} = \vec{M}_{Fe1} + \vec{M}_{Fe2} ; \quad \vec{L} = \vec{M}_{Fe1} - \vec{M}_{Fe2}$$

$M \approx 0.1 \mu_B/Fe$
Weak ferromagnetism in BiFeO$_3$

Calculations show:
Antiferromagnetic sub-lattices are canted by $\approx 1^\circ$

\[M \approx 0.1 \mu_B/\text{Fe} \]

Dzyaloshinskii-Moriya interaction (Moriya 1960):

\[E_{\text{DM}} = -\frac{1}{2} \vec{D} \cdot (\vec{M}_{\text{Fe1}} \times \vec{M}_{\text{Fe2}}) = -\vec{D} \cdot (\vec{L} \times \vec{M}) \]

\[\vec{M} = \vec{M}_{\text{Fe1}} + \vec{M}_{\text{Fe2}} ; \quad \vec{L} = \vec{M}_{\text{Fe1}} - \vec{M}_{\text{Fe2}} \]

How is the canting coupled to the structural distortions?

Electric-field-induced magnetization switching?

\[\Rightarrow \text{Electric-field-induced magnetization switching?} \]
Magneto-structural coupling in BiFeO$_3$

BiFeO$_3$: two different structural modes!

1. Counter-rotations of oxygen octahedra around [111]
2. Polar displacements along [111]

Both symmetry analysis and first principles calculations show:

DM interactions is generated by oxygen octahedra rotations!

Ederer/Spaldin, PRB 71, 060401 (2005)
Magneto-structural coupling in BiFeO$_3$

BiFeO$_3$: two different structural modes!

1. Counter-rotations of oxygen octahedra around [111]
2. Polar displacements along [111]

Both symmetry analysis and first principles calculations show:

DM interactions is generated by oxygen octahedra rotations!

Ederer/Spaldin, PRB 71, 060401 (2005)

Symmetry analysis: L in BFO does not break space inversion symmetry!

$$E \sim \vec{P} \cdot (\vec{L} \times \vec{M})$$

L has to change sign under both time and space inversion
Effect of octahedral rotations

- ionic displacements corresponding to octahedral rotations:

- $DM = 0$ if midpoint between magnetic sites is inversion center
- octahedral rotations lift inversion center between B sites
 \rightarrow weak magnetism is induced
Effect of octahedral rotations

- Ionic displacements corresponding to octahedral rotations:
 - $DM = 0$ if midpoint between magnetic sites is inversion center
 - Octahedral rotations lift inversion center between B sites \rightarrow weak magnetism is induced

Solution:
- Put magnetic cation on A-site, (e.g. FeTiO$_3$)
 \rightarrow L is odd under space inversion
- C. J. Fennie, PRL 100, 167203 (2008)
Ferroelectric/magnetic domains in BiFeO$_3$

Polarization along \{111\} direction \rightarrow 8 different FE domains

Piezoelectric force microscopy (PFM):

Zavaliche et al., APL 87, 182912 (2005)
Polarization along \{111\} direction → 8 different FE domains

Piezoelectric force microscopy (PFM):

Correlation with magnetic domains?

AFM domains (?):

FE domains:

X-ray linear dichroism (XLD) depends on orientation of antiferromagnetic axis:

Zavaliche et al., APL 87, 182912 (2005)
Magnetic anisotropy in BiFeO$_3$

\[
\Delta E \approx 2 \text{meV (LSDA)}
\]

In-plane 6-fold degeneracy (bulk):
Magnetic anisotropy in BiFeO$_3$

$E_{\text{Fe}1/2} \parallel [111]$

$\Delta E \sim 2\text{meV (LSDA)}$

$M_{\text{Fe}1/2} \perp [111]$

In-plane 6-fold degeneracy (bulk):

Magnetic moments want to be perpendicular to P

\rightarrow changing the direction of P

will affect magnetic order

71° switching

109° switching
Electric-field switching of AFM domains

- (001)-oriented films have small monoclinic distortion
- 6-fold degeneracy is broken
- Calculation: monoclinic strain favors [110] direction

71° switching → AFM axis preserved
109° switching → AFM axis changed

Electric-field switching of AFM domains

- (001)-oriented films have small monoclinic distortion
- 6-fold degeneracy is broken
- Calculation: monoclinic strain favors [110] direction

71° switching → AFM axis preserved
109° switching → AFM axis changed

→ in agreement with exp. observations

Why is it interesting?

Exchange bias coupling to a ferromagnet:

→ effective electric-field switching of magnetization

Magnetoelectric RA M

Very recent work

Exchange bias demonstrated recently for BiFeO$_3$/CoFeB heterostructures:
Bea et al., PRL 100, 017204 (2008)

“Electric field control of local ferromagnetism using a magnetoelectric multiferroic”,
Computational design of novel multiferroics

Bi$_2$FeCrO$_6$: A ferrimagnetic ferroelectric

Layered double perovskite structure:

Predicted ground state properties:

- $P_s \approx 80 \mu C/cm^2$
- $M = 2 \mu_B$/formula unit

Baettig/Spaldin, APL 86, 012505 (2005); Baettig/Ederer/Spaldin, PRB 72, 257601 (2005)
Computational design of novel multiferroics

Bi$_2$FeCrO$_6$: A ferrimagnetic ferroelectric

Layered double perovskite structure:

Predicted ground state properties:
- $P_s \approx 80 \mu$C/cm2
- $M = 2\mu_B$/formula unit

Systematic LSDA+U study for BiFeO$_3$ - Bi$_2$FeCrO$_6$ - BiCrO$_3$ to estimate T_C

$$E = E_0 - \sum_{i,j} J_{ij} \hat{s}_i \hat{s}_j$$

Mean-field approximation for T_C

Baettig/Spaldin, APL 86, 012505 (2005); Baettig/Ederer/Spaldin, PRB 72, 257601 (2005)
Overview

1) Introduction to multiferroic materials
 - Why first principles calculations?
2) Density functional theory
3) Examples:
 a) BiFeO$_3$
 - Electric polarization
 - Strain dependence
 - Coupling between polarization and magnetism?
 - Computational design of new multiferroic materials
 b) Other examples…
Magnetically induced ferroelectricity

• Two examples

 a) Spiral multiferroics: \(\text{TbMnO}_3 \)

 b) Ferroelectricity from collinear magnetic order: \(\text{HoMnO}_3 \)
Orthorhombic manganites

$RMnO_3$ ($R=$La, Pr, Nd, ... , Ho)

Orthorhombically distorted perovskite structure ($Pnma$ symmetry):

T. Kimura et al.: PRB 68, 060403(R), 2003:
Orthorhombic manganites

$RMnO_3$ ($R=$La, Pr, Nd, ... , Ho)

Orthorhombically distorted perovskite structure ($Pnma$ symmetry):

Example 1: $TbMnO_3$ - representative for “spiral multiferroics” (non-collinear)

T. Kimura et al.: PRB 68, 060403(R), 2003:
Orthorhombic manganites

$RMnO_3$ ($R=$La, Pr, Nd, ... , Ho)

Orthorhombically distorted perovskite structure ($Pnma$ symmetry):

Example 1: $TbMnO_3$ - representative for “spiral multiferroics” (non-collinear)

T. Kimura et al.: PRB 68, 060403(R), 2003:

Example 2: $HoMnO_3$ - collinear magnetic order breaks inversion symmetry
letters to nature

Magnetic control of ferroelectric polarization

T. Kimura¹, T. Goto¹, H. Shintani¹, K. Ishizaka¹, T. Arima¹ & Y. Tokura¹

- Small Polarization below $T_C \sim 28K$
- Polarization can be rotated from c to a by magnetic field
Ferroelectricity induced by spiral magnetic ordering

Mostovoy, PRL 96, 067601 (2006)

Free energy (Lifshitz invariant):

\[F_{LI} = \gamma \vec{P} \cdot \left((\vec{M} \nabla) \vec{M} - \vec{M} (\nabla \vec{M}) \right) \quad \rightarrow \quad \vec{P} = \frac{\gamma}{\alpha} \left((\vec{M} \nabla) \vec{M} - \vec{M} (\nabla \vec{M}) \right) \]

Example - frustrated Heisenberg spin chain:

\[H = \sum_{n} \left(J \vec{S}_n \cdot \vec{S}_{n+1} + J' \vec{S}_n \cdot \vec{S}_{n+2} \right) \]

Periodicity depends on relative strength of various coupling constants
→ often incommensurate
Microscopic mechanism

- **Spin-current model**
 Katsura/Nagaosa/Balatsky, PRL 95, 057205 (2005)
 “electronically driven”

- **Inverse DM interaction**
 Sergienko/Dagotto, PRB 73, 094434 (2006)
 “lattice driven”

\[E_{DM} = D_{12} \cdot (\vec{S}_1 \times \vec{S}_2) \]

\[D_{12} \sim \vec{x} \times \vec{r}_{12} \]

In both cases:

\[\vec{P} \sim \lambda \vec{r}_{12} \times (\vec{S}_1 \times \vec{S}_2) \]

Spin-orbit coupling → \(P \) typically \(\mu C/m^2 \) (BaTiO\(_3\): 25 \(\mu C/cm^2 \))
First principles calculations

Malashevich/Vanderbilt, PRL 101, 037210 (2008):

- Simplified commensurate spin order $k=1/3$ (exp. $k=0.28$)
- Highly accurate calculations including spin-orbit coupling (SOC)

Results:
- Without SOC: $P = 0$
- With SOC, no ionic relaxation: $P = 32 \, \mu\text{C/cm}^2$
- SOC + ionic relaxations: $P = -467 \, \mu\text{C/cm}^2$
- Exp.: $P = -600 \, \mu\text{C/cm}^2$

Polarization mainly “lattice-driven”, but not fully compatible with simple DM model.
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:

$$F = c(E_1^2 - E_2^2)P_a$$

$$\rightarrow P_a = \frac{c}{\alpha}(E_1^2 - E_2^2)$$

$\text{Mn}^{3+}: d^4$

t$_{2g}$ \hspace{1cm} eg

Double exchange model (virtual hopping):

$$H = -\sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\})d_{j\sigma} + J \sum_i \vec{S}_i \cdot \vec{s}_i + \sum_{i\alpha} \kappa_{i\alpha}Q_{i\alpha}^2 + H_{JT}$$

\Rightarrow FM bonds: $\alpha_p > \alpha_0$ (less distorted)

\Rightarrow AFM bonds: $\alpha_{ap} < \alpha_0$ (more distorted)
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:

\[F = c (E_1^2 - E_2^2) P_a \]

\[\rightarrow P_a = \frac{c}{\alpha} (E_1^2 - E_2^2) \]

\begin{align*}
\text{Mn}^{3+}: d^4 & \\
E & \\
eg e_g & \\
\neg t_{2g} & \\
\bar{S} & \\
\end{align*}

Double exchange model (virtual hopping):

\[H = - \sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\}) d_{j\sigma} + J \sum_i \bar{S}_i \cdot \bar{s}_i + \sum_{i\alpha} \kappa_{\alpha} Q_{i\alpha}^2 + H_{JT} \]

\(\rightarrow \) FM bonds: \(\alpha_p > \alpha_0 \) (less distorted)

\(\rightarrow \) AFM bonds: \(\alpha_{ap} < \alpha_0 \) (more distorted)
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:
\[F = c(E_1^2 - E_2^2)P_{\alpha} \]
\[\rightarrow P_{\alpha} = \frac{c}{\alpha} (E_1^2 - E_2^2) \]

\[\text{Mn}^{3+}: d^4 \]

Double exchange model (virtual hopping):

\[H = -\sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\})d_{j\sigma} + J\sum_i \vec{S}_i \cdot \vec{S}_i + \sum_{i\alpha} \kappa_{\alpha} Q_{i\alpha}^2 + H_{JT} \]

- FM bonds: $\alpha_\sigma > \alpha_0$ (less distorted)
- AFM bonds: $\alpha_{ap} < \alpha_0$ (more distorted)
Alternative mechanism without SOC

\textbf{E-type AFM in orthorhombic manganites (e.g. HoMnO}_3)\textbf{)

Relevant free energy invariant:

\[F = c(E_1^2 - E_2^2)P_a \]

\[\rightarrow P_a = \frac{c}{\alpha} (E_1^2 - E_2^2) \]

\[\text{Mn}^{3+}: d^4 \]

\[\text{Double exchange model (virtual hopping):} \]

\[H = -\sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\})d_{j\sigma} + J \sum_i \bar{S}_i \cdot \bar{s}_i + \sum_{i\alpha} \kappa_{\alpha} Q_{i\alpha}^2 + H_{JT} \]

\[\rightarrow \text{FM bonds: } \alpha_p > \alpha_0 \text{ (less distorted)} \]

\[\rightarrow \text{AFM bonds: } \alpha_{ap} < \alpha_0 \text{ (more distorted)} \]
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:
\[F = c(E_1^2 - E_2^2)P_a \]

\[\rightarrow P_a = \frac{c}{\alpha}(E_1^2 - E_2^2) \]

\(\text{Mn}^{3+}: d^4 \)

\(\left(\begin{array}{c} e_g \\ t_{2g} \end{array} \right) \)

\(\tilde{S} \)

Double exchange model (virtual hopping):

\[H = -\sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\}) d_{j\sigma} + J \sum_i \tilde{S}_i \cdot \tilde{s}_i + \sum_{i\alpha} \kappa_{\alpha} Q_{i\alpha}^2 + H_{JT} \]

- **FM bonds:** \(\alpha_p > \alpha_0 \) (less distorted)
- **AFM bonds:** \(\alpha_{ap} < \alpha_0 \) (more distorted)
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:

$$F = c(E_1^2 - E_2^2)P_a$$

$$\rightarrow P_a = \frac{C}{\alpha} (E_1^2 - E_2^2)$$

Mn$^{3+}$: d4

Double exchange model (virtual hopping):

$$H = - \sum_{i,j,\sigma} d_{i\sigma}^\dagger t_{ij}(\{Q_{i\alpha}\}) d_{j\sigma} + J \sum_i \vec{S}_i \cdot \vec{s}_i + \sum_{i\alpha} \kappa_{\alpha} Q_{i\alpha}^2 + H_{JT}$$

- FM bonds: $\alpha_p > \alpha_0$ (less distorted)
- AFM bonds: $\alpha_{ap} < \alpha_0$ (more distorted)
Alternative mechanism without SOC

E-type AFM in orthorhombic manganites (e.g. HoMnO$_3$)

Relevant free energy invariant:
\[F = c(E_1^2 - E_2^2)P_a \]
\[\rightarrow P_a = \frac{c}{\alpha}(E_1^2 - E_2^2) \]

Mn$^{3+}$: d4

Double exchange model (virtual hopping):

\[H = -\sum_{i,j,\sigma} d_{i\sigma}^j t_{ij}(\{Q_{i\alpha}\}) d_{j\sigma}^i + J \sum_i S_i \cdot \vec{S}_i + \sum_{i\alpha} \kappa_\alpha Q_{i\alpha}^2 + H_{JT} \]

\(\rightarrow \) FM bonds: \(\alpha_p > \alpha_0 \) (less distorted)

\(\rightarrow \) AFM bonds: \(\alpha_{ap} < \alpha_0 \) (more distorted)

Interplay of hopping, octahedral rotations and E-type AFM leads to electric polarization
HoMnO₃: First principles calculations

Picozzi et al., PRL 99, 227201 (2007)

Sizable polarization $\sim 6\mu\text{C/cm}^2$
(not spin-orbit related!)

Not confirmed by experiment, yet, but difficult to prepare single domain state.
HoMnO$_3$: First principles calculations

Picozzi et al., PRL 99, 227201 (2007)

Sizable polarization $\sim 6\mu$C/cm2
(not spin-orbit related!)

Not confirmed by experiment, yet, but difficult to prepare single domain state.

Similar mechanism might be at work in RMn$_2$O$_5$
($R=$Tb, Ho, Y, ..)
Summary

• First principles calculations allow to make quantitative predictions of materials properties and provide a powerful analysis tool
• Examples:
 √ Polarization in bulk BiFeO$_3$ is large and only slightly affected by epitaxial strain
 √ Weak magnetization in thin films is coupled to antiferrodistortive counter-rotations of oxygen octahedra
 √ Electric field induced switching of AFM domains can be explained by change in magneto-crystalline anisotropy
 √ New “designer multiferroics” can be predicted
 √ Polarization in TbMnO$_3$ mostly lattice-driven
 √ “Exchange-striction” can cause significant polarization even for collinear magnetic order