The Goal

To create a crane created with two servo motors in a pan tilt configuration and a stepper motor winch.
Purpose

To review and expand upon:

- Analog to digital
- PWM system
- State Machines
<table>
<thead>
<tr>
<th>Physical Setup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SSMI Board</td>
<td>2 Potentiometers</td>
</tr>
<tr>
<td>2 Servo Motors</td>
<td>Pushbutton Switch</td>
</tr>
<tr>
<td>Pan-tilt Connectors</td>
<td>Actobotics Pieces</td>
</tr>
<tr>
<td>Stepper Motor</td>
<td>Legos</td>
</tr>
<tr>
<td>Easy Driver</td>
<td>Magnets</td>
</tr>
<tr>
<td></td>
<td>Fishing Line</td>
</tr>
</tbody>
</table>
Schematic
Initialize variables
Delay loop function milliseconds
Delay loop function microseconds
Function: ButtonPress
 Calculate int N based off of calculate distance variable
 for N amount of times drop line
 Delay
 for N amount of times reel line up

Set DDRT for output
Setup DDRM for input
Setup PWM for PT3 and PT4.
Setup A/D Converter for two channel conversions AN02 and AN03
Loop forever:
 Initialize state1 to 1
 Initialize state2 to 0

 while state1 equals 1 and state2 equals 0 do the following
 Get value from A/D converter from AN02 and setup PT4 Duty Cycle
 Set calculate distance equal to the PWM Duty 4
 Get value from A/D converter from AN03 and setup PT3 Duty Cycle

 while state2 equals 1 and state1 equals zero do the following
 call function button press
 Set state1 equal to 1 and state2 equal 0
Challenges

- Providing counter weight to stabilize movement
- Connecting the Easy-Driver
- Using PT3 directly instead of hardwiring PT5 to PT3
- Calculating distance for fishing line to drop
 - dependant on height/angle of boom
Questions?