SURVEY OF SEAMLINE BLENDING TECHNIQUES

Kevin Emery
Colorado School of Mines
December 1st, 2014
Outline

- Motivation
- Techniques
 - Simple
 - Feathering
 - Pyramid Blending
 - Intermediate
 - GIST
 - Advanced
 - PLCC
- Discussion
- Questions
Motivation

Unblended

Blended
Images Used For Simple Methods
Unblended Image
Simple: Feathering

• Apply a filter along the seamline

• Blends the point where the images meet

\[I(x, y) = \begin{cases}
 I_1(x, y), & x < \text{blend zone} \\
 w(x) \cdot I_1(x, y) + (1 - w(x)) \cdot I_2(x, y), & x = x_0 \\
 I_2(x, y), & x > \text{blend zone}
\end{cases} \]
Simple: Feathering
Simple: Pyramid Blending

- Computationally efficient
 - Construct Laplacian pyramids for each image
 - At each level, spline the centerline of the pyramids together
 - Reconstruct the image from the splined pyramids

\[LS_i(i, j) = \begin{cases} LA_i(i, j) & \text{if } 1 < 2^{N-1} \\ \frac{(LA_i(i, j) + LB_i(i, j))}{2} & \text{if } i = 2^{N-1} \\ LB_i(i, j) & \text{if } i > 2^{N-1} \end{cases} \]
Simple Pyramid Blending
Intermediate: GIST

- GIST: Gradient-domain Image STitching

- Two implementations
 - GIST1 – Computes the stitched image by minimizing a cost function
 - Cost function is a dissimilarity measure between the derivatives of the stitched image and the derivatives of the input images.
 - Cost function highly penalizes inconsistent derivatives, eliminating bad stitching edges

Intermediate: GIST

- **GIST**: Gradient-domain Image STitching

- **Two implementations**
 - GIST2 – Stitch the derivative of the input images
 - Compute the derivatives in x and y of both images
 - Stitch the x and y derivatives separately to form a field
 - Any stitching method may be used

Levin A., Zomet A., Peleg S., and Weiss Y. “Seamless Image Stitching in the Gradient Domain”.
Intermediate: GIST1

Input image I_1

Pasting of I_1 and I_2

Input image I_2

Stitching result
Intermediate: GIST1 vs. GIST2
Advanced: PLCC

- PLCC: Poisson Local Color Correction

- Two steps
 1) Find the optimal cutting curve
 \[W(C) = \sum_{p \in C} W(p), \]
 \[W(p) = \| \nabla I_S(p) - \nabla I_T(p) \|_1 \]
 2) Stitch the images using Poisson color matching

Sadeghi M. A., Hejrati S. M. M., Gheissari N. “Poisson Local Color Correction For Image Stitching”.
Advanced: PLCC
Advanced PLCC
Discussion/Future Work

• Evaluation is entirely subjective
 • Leads to a lot of gray areas

• Would like to run timing analysis on these
 • Timing is mentioned in the papers, but on varying computers
Questions?