LICENSE PLATE DETECTION

ADAM LONGORIA
INTRODUCTION

• The goal is to detect license plates and correctly recognize the characters on the plate.
PREVIOUS WORK

• ALGORITHMIC AND MATHEMATICAL PRINCIPLES OF AUTOMATIC NUMBER PLATE RECOGNITION SYSTEMS - ONDREJ MARTINSKY – BRNO

• Local Enhancement of Car Image for License Plate Detection - V. Abolghasemi and A. Ahmadyfard – EUSIPCO at Poland 2007

• AutoVu by Genetec – Provides ALPR cameras for law enforcement, commercial organizations, etc.
ASSUMPTIONS / CONSTRAINTS

• Minimal glare on image and camera lens
• Minimal distractor objects
• Sufficient lighting of vehicle
• Plate located ~1m from the camera
• US License plates
TASKS

• License Plate Localization
 • Isolating the plate from the rest of the image

• Character Segmentation
 • Extracting characters images of interest

• Optical Character Recognition
 • Translate captured image into alpha-numeric text
LICENSE PLATE LOCALIZATION

• Convert image to BW
• 5x5 median filter to reduce noise
• Erosion / dilation by ‘disk’ structuring element – difference
• Convolve image with 2x2 box to enhance edges
• Intensity scale and adjust contrast
• Dilation by ‘line’ structuring element – horizontal and vertical
• Regionprops ➔ BoundingBox criteria ➔ crop plate
LICENSE PLATE LOCALIZATION
LICENSE PLATE LOCALIZATION
CHARACTER SEGMENTATION

- Convert image to BW
- 5x5 median filter to reduce noise
- Open by ‘disk’ structuring element
- Regionprops → BoundingBox criteria
 - Alignment
 - Grouping
 - Width / height ratios
- Crop characters images
CHARACTER SEGMENTATION
OPTICAL CHARACTER RECOGNITION

• Create database of license plate characters
• Create templates of all characters → cell image
• Resize characters to match template
• Normalized two-dimensional cross-correlation
• Find coordinates of highest correlation
• Case structure to match coordinates with corresponding character
OPTICAL CHARACTER RECOGNITION
OPTICAL CHARACTER RECOGNITION

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>B</td>
<td>9</td>
<td>0</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>L</td>
<td>I</td>
<td>T</td>
<td>E</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>9</td>
<td>J</td>
<td>K</td>
<td>T</td>
<td>M</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>P</td>
<td>L</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>V</td>
<td>A</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION

• Achievements
 • Recognizing characters on detected plate with given assumption and contraints

• Limitations
 • Plate detection
 • Image resolution
FUTURE WORK

• Detect multiple license plates in an image

• Create version to run in real time

• Tweak algorithm to ignore distractor objects