Feature Extraction for Diagnosis of Diabetic Retinopathy

Teal Hobson-Lowther

Colorado School of Mines

4/22/2015
What is Diabetic Retinopathy?

Diabetes occurs when the pancreas does not secrete enough insulin, or the body is unable to process insulin properly.

Complication of Diabetes
- Effects kidneys, eyes, nerves, and heart
- Abnormal rises in glucose levels damage blood vessels

Diabetic Retinopathy
Over time, the damage to blood vessels in the eye causes loss of vision, and in some cases complete blindness. This complication is called *Diabetic Retinopathy*.
What is Diabetic Retinopathy? (cont’d)

DR Gives Insight into Overall Patient Health
- Fundus Imagery provides a look at the patient’s blood vessels
- Non-invasive
- At least 40% of people with Diabetes show signs of DR.

Early Detection of DR Crucial to Treatment
- The most effective treatment for DR can be administered only in the first stages of the disease.
- Early detection through regular screening is of paramount importance.
Diabetic Retinopathy Ranking System

Rank 0 (a):
No symptoms of Diabetic Retinopathy present.

Rank 1 (b): Mild Non-Proliferate Diabetic Retinopathy
- At least one microaneurysm.
- With or without the presence of:
 - Retinal hemorrhages.
 - Hard exudates.
 - Cotton wool spots.
 - Venous loops.

Rank 2 (c): Moderate Non-Proliferate Diabetic Retinopathy
- Numerous microaneurysms and retinal hemorrhages are present.
- A limited amount and cotton wool spots of venous beading can also be seen.

Rank 3 (d): Severe Non-Proliferate Diabetic Retinopathy
SNPDR is classified by any one of the following:
- Numerous hemorrhages and microaneurysms in 4 quadrants of the retina
- Venous beading in 2 or more quadrants
- Intraretinal microvascular abnormalities in at least 1 quadrant

Rank 4 (e): Proliferate Diabetic Retinopathy
Leaked blood contaminates the vitreous gel
Main Technical Difficulties

Noisy Images

![Noisy Images](image1.png)

Different Camera Types

![Different Camera Types](image2.png)

Large Images, Involved Processing

To scale: 3888x2592 (left) vs. 256x256 (right)

![Large Images](image3.png)
Kaggle

- The world’s largest community of data scientists
- Competitions hosted by organizations who don’t have access to advanced machine learning techniques.
- Data scientists from all fields of research join forces to solve relevant problems
- Offering $100K to the creator of the most effective DR ranking algorithm
General Methodology

Strategy for DR Classification

- Pre-process the image set to make more uniform
- Use algorithms to detect and evaluate features
- Feed features into classification algorithms
 - Support Vector Machines (SVM)
 - Neural Networks
 - C-Means Classifiers
Feature Detection Algorithms and Their Success [1]

<table>
<thead>
<tr>
<th>Authors</th>
<th>No of classes</th>
<th>Method</th>
<th>Accuracy of classification</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang et al. 2000</td>
<td>2</td>
<td>Minimum distance discriminant classifier</td>
<td>70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sinthanayothin et al. 2003</td>
<td>2</td>
<td>Most operator</td>
<td>Not reported</td>
<td>80%</td>
<td>71%</td>
</tr>
<tr>
<td>Usher et al. 2003</td>
<td>2</td>
<td>Lesions</td>
<td>Not reported</td>
<td>95%</td>
<td>53%</td>
</tr>
<tr>
<td>Singalavania et al. 2005</td>
<td>2</td>
<td>Blood vessels, exudates, haemorrhages, microaneurysms</td>
<td>Not reported</td>
<td>75%</td>
<td>83%</td>
</tr>
<tr>
<td>Lee et al. 2005</td>
<td>3</td>
<td>Hemorrhages, microaneurysms, hard exudates, cotton wool spots</td>
<td>Max: 88%</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Neubauer et al. 2005</td>
<td>2</td>
<td>Retinal thickness analyzer</td>
<td>Not reported</td>
<td>93%</td>
<td>100%</td>
</tr>
<tr>
<td>Kahai et al. 2006</td>
<td>2</td>
<td>Decision support system (DSS)</td>
<td>Not reported</td>
<td>100%</td>
<td>63%</td>
</tr>
<tr>
<td>Philip et al. 2007</td>
<td>2</td>
<td>Exudates</td>
<td>Not reported</td>
<td>91%</td>
<td>67%</td>
</tr>
<tr>
<td>Estabridis and Figueiredo</td>
<td>2</td>
<td>Fovea, blood vessel network, optic disk, bright and dark lesions</td>
<td>90%</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Li et al. 2008</td>
<td>2</td>
<td>Bright lesions, retinal vessel patterns</td>
<td>Not reported</td>
<td>81%</td>
<td>Not reported</td>
</tr>
<tr>
<td>Abramoff et al. 2008</td>
<td>3</td>
<td>Optic disc, retinal vessels, hemorrhages, microaneurysms, vascular, abnormalities, exudates, cotton wool spots, druseen</td>
<td>Not reported</td>
<td>84%</td>
<td>64%</td>
</tr>
<tr>
<td>Wong et al. 2008</td>
<td>4</td>
<td>Area of blood vessel</td>
<td>84%</td>
<td>92%</td>
<td>100%</td>
</tr>
<tr>
<td>Nayak et al. 2008</td>
<td>3</td>
<td>Blood vessels, exudates and texture</td>
<td>94%</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>Acharya et al. 2008</td>
<td>5</td>
<td>Higher order spectra</td>
<td>82%</td>
<td>83%</td>
<td>89%</td>
</tr>
<tr>
<td>Acharya et al. 2009</td>
<td>5</td>
<td>Blood vessel, exudates, microaneurysms, haemorrhages</td>
<td>86%</td>
<td>82%</td>
<td>86%</td>
</tr>
<tr>
<td>Vujosevic et al. 2009</td>
<td>2</td>
<td>Single lesions</td>
<td>Not reported</td>
<td>82%</td>
<td>92%</td>
</tr>
</tbody>
</table>
Pseudocode for Image Pre-Processing

Green Channel Extraction
Research has shown that the green channel of an RGB digital fundus image yields the most precise results. [1]
- Green_Channel = Original_Image(:, :, 2)

Normalizing and Inverting the Image
Normalize the green channel, invert the image.
- Normalized_Image = mat2gray(Green_Channel)
- Inverted_Image = imadjust(Normalized_Image,[0;1],[1;0])

Detecting Edge of the Frame
The edge of the frame is frequently subtracted from the results of other feature detection algorithms for use of imfill().
- SD = strel('disk',8);
- Eroded = imerode(Inverted_Image,SD);
- Dilated =imdilate(Inverted_Image,SD);
- Diff = Dilated-Eroded
- Edge = im2bw(Diff,.099)
Results of Pre-Processing

Figure 1: Results of image preprocessing after:

a) Grayscale conversion

b) Intensity inversion

c) Edge detection
Pseudocode for Blood Vessel Detection

Adaptive Histogram Equalization
Smoothes image and increases contrast
- \(\text{AHE} = \text{adapthisteq}(\text{Original Image}) \)

Morphological Opening
Opening with a disk-shaped element will reveal all the circularly shaped parts of the image:
- \(\text{SD} = \text{strel('disk',8)} \rightarrow \text{Opened Image} = \text{imopen(AHE,SD)} \)

Subtract Opened Image from High Contrast Image
Subtracting these circular parts of the image from the original yields blood vessels only:
- \(\text{BV Img} = \text{AHE} - \text{Opened Image} \)

Binarize Image
- \(\text{BV BW} = \text{im2bw(Blood Vessel Img,.099)} \)

Median Filter Image
- \(\text{BV Med} = \text{medfilt2(BV BW)} \)

Remove Boundary and Fill Holes
- \(\text{BV Sub} = \text{BV Med} - D \)
- \(\text{BV Final} = \text{imfill(BV Sub,'holes')} \)
Results of Blood Vessel Detection Algorithm (Healthy Eye)

Figure 2: Healthy eye blood vessel detection after:
- a) Adaptive histogram equalization
- b) Image opening
- c) Image subtraction
- d) Binary thresholding
- e) Edge subtraction
- f) Image fill and inversion
Results of Blood Vessel Detection Algorithm (Mild NPDR)

Figure 3: Mild NPDR blood vessel detection after:
- a) Adaptive histogram equalization
- b) Image opening
- c) Image subtraction
- d) Binary thresholding
- e) Edge subtraction
- f) Image fill and inversion
Pseudocode for Exudate Detection

Octagon/Disk Morphological Openings

- SD = strel('disk',8) → Disk_Opened = imopen(Original_Image, SD)
- SO = strel('octagon',9) → Octagon_Opened = imopen(Disk_Opened,SO)

Closing Using Octagon Shape

- SOB = strel('octagon',30) → Octagon_Closed = imclose(Octagon_Opened,SOB)

Binarized Image

- Bin_Img = im2bw(Octagon_Closed,.3)

Open Using Disk Shape

- Final_Img = imopen(Bin_Img,SD)
Results of Exudate Detection Algorithm (PDR)

Figure 4: Proliferate DR exudate detection after:
- a) Disk opening
- b) Small octagon opening
- c) Large octagon opening
- d) Final black & white threshold
Figure 5: Healthy eye exudate detection after:
 a) Disk opening
 b) Small octagon opening
 c) Large octagon opening
 d) Final black & white threshold
The process for hemorrhage detection is essentially the same as that for exudate detection, but using a smaller threshold levels for binary conversion.
Results of Hemorrhage and Micro-aneurysm Detection Algorithm (PDR)

Figure 6: Proliferate DR hemorrhage/micro-aneurysm detection after:
- a) Disk opening
- b) Small octagon opening
- c) Large octagon opening
- d) Final black & white threshold
Results of Hemorrhage and Micro-aneurysm Detection Algorithm (Healthy Eye)

Figure 7: Healthy eye hemorrhage/micro-aneurysm detection after:
- a) Disk opening
- b) Small octagon opening
- c) Large octagon opening
- d) Final black & white threshold
Most classification begins with finding distinct features to feed your algorithms.

This amounts to a large amount of legwork in image pre-processing.

Morphological openings/closings are your friends:
- Noise removal
- Shape detection
Future Work

- Find more robust algorithms for hemorrhage and micro-aneurysm detection
- Apply feature extraction to each image
- Feed feature vectors into different classification algorithms
References

Any Questions?