Lane Detection

Adam Longoria
Introduction

• Project goal is to detect traffic lanes from a video feed captured from forward facing camera on vehicle.
Previous work

- Google autonomous car
- Topic of many projects with various methods
 - RANSAC line fitting
 - RANSAC Bezier spline fitting
 - Bezier spline rasterization and plotting
 - Bresenham's line rasterization
 - Inverse Perspective Mapping (IPM)
- Caltech Lanes
Caltech Lanes

- C++ OPEVCV real time lane detection system for single images by fitting robust Bezier splines
- Two mode of operation
 - Single lane mode
 - Multiple lane mode
- 4 sequence dataset
 - 1225 frames

http://vision.caltech.edu/malaa/software/research/caltech-lane-detection/
Assumptions / Constraints

- Camera position relative to the vehicle is fixed.
- Detection of lane the vehicle is currently in. (single mode)
- Average lane width = 3.7m
- Average car length = 4.5m
- Correct internal MATLAB functions
Tasks

- Inverse Perspective Mapping
- Image Processing
- Hough Lines Transform
- Line Grouping Algorithm
- Reverse Coordinate Transform
- Image Post-processing
Inverse Perspective Mapping

GOAL: Bird’s eye view from gray scale image
- Control points from gray scale image are hard-coded
- Guess at pixels/meter scale
- Projective transform from control point
 - used `fitgeotrans()`
 - scaled using `imref2d()`
 - `imwarp()`
- Output image after transform
 - ~1.2 lanes wide x ~4 car lengths long
Inverse Perspective Mapping
Image Processing

GOAL: prepare IPM image for Hough transform
- Small Gaussian blur to reduce noise
- `imadjust()` to increase contrast
- Auto-thresholding using `graythresh()`
- `im2bw()` -> edge image using Prewitt filter
- `imdilate()` -> two structuring elements
 - Small disk
 - Vertical bar
Image Processing
Hough Lines Transform

GOAL: detect lane lines from processed edge image

- Use `hough()` to obtain rho and theta values of lines
 - Able to define angles of interest
- `houghpeaks()` to obtain top 10 peaks
- `houghlines()` to obtain specified lines
 - Minlength of line = 50
 - FillGap = 20
Hough Lines Transform
Line Grouping Algorithm

GOAL: group lines around/on the lane to for single lines
- Bunch of math
- If statements
- Attempt to throw out bad lines
Reverse Coordinate Transform

GOAL: Convert coordinates from referenced scale bird’s eye view to original image

- Use three sets of points for affine transform
- use `maketform()` to create transform matrix
- use `tforminv()` to get coordinates from one image to the other
Image Post-processing

GOAL: Plot line over detected lanes on original images

- Minimal errors
- Indicate frame number
Results
Discussion

• Achievements
 ▫ Able to detect lanes in bird’s eye view
 ▫ Lines on original image needs some work

• Limitations
 ▫ Camera parameters unknown
 ▫ Image resolution
 ▫ Contrast of lane color to road color
 ▫ Weather and worldly objects
Future work

• Fix affine coordinate transfer function

• Create version to run in real time

• Modify to detect all lanes
Sources

end