Problems 1–3 refer to the linear model \(y_i = \beta_0 + \beta_1x_{i1} + \cdots + \beta_px_{ip} + \varepsilon_i \). Note that the model contains an intercept, i.e. \(x_{0i} = 1 \).

1. Let \(e \) be the residual vector from the fit of the linear model.
 (a) Find a vector of constants \(c \) such that \(c^Te = 0 \).
 (b) Explain why the hat matrix \(H \) is positive semidefinite, but not positive definite.

2. A linear model is fit, and it turns out that \(e = y \). Find \(\sum y_i \).

3. A linear model is fit, and it turns out that \(e = 0 \). Does this imply that \(\varepsilon = 0 \)? Explain.

4. Let \(X \) be an \(n \times p \) matrix, \(n \geq p \), of full column rank. Let \(A \) be a \(p \times p \) matrix of full column rank, and let \(Z =XA \). Consider the following two linear models:
 \[
 \begin{align*}
 y &= X\beta + \varepsilon \\
 y &= Z\beta + \varepsilon
 \end{align*}
 \]
 Show that the residuals \(e \) are the same for both models.