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ABSTRACT 
 

 This thesis documents the locations and proportions of lithofacies, morphometric 

characteristics and continuity of sandstone of a 3D exposure of an ancient fluvial 

channel belt in the Cedar Mountain Formation.  Morphometric measurements include: 

width (80m), thickness (6.3 m), sinuosity (1.2), radius of curvature (right: 175 m, left: 

220 m) bend curvature (right: 2.2, left: 2.8), and aspect ratio (12.7).  Additionally, using 

cross-cutting relations, superposition, and facies type, the sequential evolution of the 

channel belt is interpreted.  Using photopanels and measured sections, three primary 

lithofacies are documented.  Facies within the channel belt are cross-stratified 

sandstone, conglomerate, and ripple-to-planar laminated sandstone.  Lithofacies are 

quantified by geomorphic position (outside bend, inside bend, and inflection point) in the 

studied channel belt.    Sandstone is continuous across the entire outcrop, however, 

bedsets and stories do not longitudinally persist the entire wavelength of the channel 

belt.  Furthermore, we interpret that high-energy flows incised into the adjacent 

mudstone to create channel for fluid and sediment to flow through.  Next, a high-energy 

conglomerate was deposited across the base of the channel as it began to migrate 

laterally although conglomerate is thickest at inflection points.  Finally, using 

superposition and low-flow regime structures, we interpret that laterally accreting and 

downstream accreting bars filled the channel belt to the point of avulsion.  These results 

can be used to update previous fluvial reservoir models to predict the spatial location 

and proportions of lithofacies within a reservoir.  Updated reservoir model helps predict 

flow units and preferential fluid migration pathways in the subsurface.     
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CHAPTER 1 

INTRODUCTION 

 Fluvial channels and their associated deposits represent one of the most 

extensive depositional environments on earth (Qui et al., 1987).  To aid fluvial reservoir 

modeling, previous studies have focused on fluvial facies, fluvial reservoir modeling, 

and fluvial architecture analysis (e.g. Galloway et al., 1982; Collinson and Lewin, 1983; 

Schumm, 1985; Qiu et al., 1987; Kerr and Jirik, 1990; Miall and Tyler, 1991; Doyle and 

Sweet, 1995; Bridge, 2006; Miall, 2006; Slatt, 2006; Fielding et al., 2009; Ghazi and 

Mountney, 2009; Colombera et al., 2012a, b).  The quantitative description of sand-

prone systems is important because it provides: 1) an improved understanding of the 

fundamental nature of sand-prone systems (stacking patterns, volumetrics, etc.), and 2) 

the application of data to modeling depositional characteristics of such systems, such as 

basin analysis and reservoir modeling (Drinkwater and Pickering, 2001).  

The producibility of fluvial reservoirs is a function of sandstone connectivity and 

continuity (Larue and Hovadik, 2006).  In this context, connectivity refers to the 

interconnectedness of sandstones between stratigraphically adjacent channel belts, 

whereas continuity refers to the longitudinal and lateral persistence of sandstones within 

fluvial channel belts (Larue and Hovadik, 2006).  In other words, connectivity refers to 

how channel belts are connected to one another and continuity refers to how internal 

features of channel belts, such as barforms, are connected to one another.  There are 

two alternative models regarding reservoir connectivity. First, Larue and Friedmann 

(2005) and Larue and Hovadik (2006) created reservoir models of fluvial channel 

systems, whereby the degree of amalgamation between stratigraphically adjacent 
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channel belts was varied from little to high degree of amalgamation.  Critically, the 

channel belts were modeled as continuous belts of sandstone, with no internal 

heterogeneity, similar to that depicted in Figure 1.1A.  Larue and Friedmann (2005) and 

Larue and Hovadik (2006) document that even when a small amount of amalgamation 

exists between stratigraphically adjacent channel belts, the reservoir and associated 

sandstones are fully connected. Second, Pranter et al. (2007 and 2008) conducted a 

similar study in which sandstone in channel belts were modeled as having low 

continuity, similar to the channel belt depicted in Figure 1.1B, in which sandstones are 

only located in point bars of channel belts. Pranter et al. (2007 and 2008) determined 

that channel belts are highly heterogeneous and not well connected due to intrachannel 

mudstone that separated lateral accretion packages.   It is evident from these studies 

that intra-channel continuity is a key driver for connectivity. 

  Few studies have focused on intra-channel continuity, the most notable example 

is Donselaar and Overeem (2008). Donselaar and Overeem’s (2008) research was 

based on a hypothesis that intra-channel continuity is dictated by the types of bars 

(downstream vs laterally accretings) that fill the fluvial channel belts (Figure 1.1).  Ford 

and Pyles (2014) proposed two end-member fill styles for fluvial channel belts (Figure 

1.2): 1) those filled primarily by lateral accretion deposits; and 2) those filled primarily by 

downstream accretion deposits.  Channel belts containing primarily downstream 

accretion deposits are interpreted to contain higher sandstone continuity than their 

laterally accreting counterparts (Donselaar and Overeem, 2008).  This thesis is focused 

on the latter model of a channel belt that is filled with a downstream-accreting fill. 
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The goal of this research is to improve our understanding of longitudinal continuity, 

sequential evolution, and sedimentation style in a low-sinuosity channel belt that 

contains both downstream accretion deposits and lateral accretion deposits (similar to 

Figure 1.1A).    

 A three-dimensional exposure of a fluvial channel belt in the Cedar Mountain 

Formation is the focus of this study (Figure 1.3).  The Cedar Mountain Formation is 

ideal because it contains multiple channel belts that are exposed as sinuous ridges that 

persist across the landscape (Young, 1960; Stokes, 1961; Derr, 1974; Harris, 1980; 

Williams et al., 2007) making this a world class outcrop to address the goals of this 

study. 

  



Laterally accreting bars

Downstream accreting bars
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500 m

Figure 1.1: Diagrams depicting end-member styles for sandstone distributions in 

fluvial channel belts (from Donselaar & Overeem, 2008).  A) Sandstone is located in 

point bars and in the channel fill forming a spatially interconnected network of sand-

stone.  B)  Sandstone is only located in the point bars, forming a number of spatially 

isolated volumes of sandstone.
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Figure 1.2:  A) Schematic diagram of methodology developed by Ford and Pyles 

(2014) for fluvial hierarchy of architectural elements.  Time span of deposition, cross-

cutting relationships, and superposition increase in an upward transect through the 

hierarchical levels.  Figure components are not drawn to scale. B) Diagrams depicting 

end-member classes of fluvial channels based on the intra-channel bar migration 
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accreting bars, and (Lower) channel belts containing predominantly downstream 

accreting bars.
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CHAPTER 2 

GEOLOGICAL SETTING 

 The Lower Cretaceous (Aptian-Albian), fluvial Cedar Mountain Formation crops 

out in central Utah, east of the San Rafael uplift (Kirkwood, 1976; Currie, 1998; Williams 

et al, 2011).  The field area is located approximately 15 kilometers southwest of the 

town of Green River, Utah (Figure 2.1).   

The Cedar Mountain Formation unconformably overlies the Jurassic Morrison 

Formation and unconformably underlies the Cretaceous Dakota Sandstone, which is in 

turn overlain by the Mancos Shale (Figure 2.2).  The Cedar Mountain Formation is 

subdivided into the Buckhorn Conglomerate and overlying Ruby Ranch Member (Figure 

2.2B) in the study area (Harris, 1980; Williams et al., 2007).  The basal Buckhorn 

Conglomerate crops out to the west and east of the study area as a matrix-supported 

pebble conglomerate that, in general, fines upward from pebbles and cobbles to 

medium-grained sand.  The clasts are composed of chert, quartzite, and other clastic 

material.  The Ruby Ranch Member contains lenticular conglomeratic sandstones with 

predominantly northeastward paleocurrents that crop out as elongate ridges in the area 

(Figures 1.3, 2.2).  The adjacent mudstones contain abundant limestone nodules and 

are interpreted as the associated floodplain deposits (Kirkwood, 1976; Harris, 1980; 

Currie, 1998; Lorenz et al., 2006).   

The Cedar Mountain Formation was deposited in a foreland basin that was 

located basinward of the Sevier Highlands (DeCelles et al., 1995; DeCelles and Currie, 

1996; DeCelles and Giles, 1996).  The subsequent deposition of the Dakota Sandstone 

and Mancos Shale buried the Cedar Mountain Formation.  Erosion related to the uplift 
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of the Colorado Plateau exposed the paleochannels in the Cedar Mountain Formation 

as elongate ridges (Stokes, 1944; Harris, 1980; DeCelles et al, 1995; DeCelles and 

Currie, 1996; DeCelles and Giles, 1996; Williams et al., 2011).  Williams et al. (2011) 

referred to the elongate outcrops of fluvial channels as “inverted topography” because 

the once entrenched channels now form ridges on the surface. 

The basal Buckhorn Conglomerate is interpreted as a braided-river deposit 

(Harris, 1980).  Harris (1980) interpreted that clasts within the conglomerate in the 

fluvial channels of the Cedar Mountain Formation are derived from the near-by Sevier 

highlands and the underlying Brushy Basin Member of the Morrison Formation.  Harris 

(1980) interpreted the Ruby Ranch Member to contain alluvial plain deposits, shallow 

lake deposits, and stable, non-migrating, fluvial channel belts.  Channel Belts A, B, C, 

D, and E all crop out as sinuous ridges that can be observed in three-dimensions 

(Figure 2.2).  However, Channel Belt A, specifically Segments 4 and 5, has the best 

exposure of all the channel belts in the area.   Therefore the main focus of this study is 

on Segments 4 and 5 of Channel Belt A of the Ruby Ranch Member (Figures 1.3, 2.2A), 

because the sedimentary structures are exceptionally well exposed (Figure 1.3) and 

morphometric characteristics can be measured, and stratigraphic surfaces are 

particularly well exposed.  Segment 4 exposes 2 bends in the channel belt whereas 

Segment 5 exposes a strike-view cross section of the channel belt and its adjacent 

floodplain deposits (Figure 1.3).  Note that the lateral margins have eroded away but a 

perfect cross-section is exposed in Segment 5.  The channel-belt fill generally fines 

upward from very-coarse grained sands to fine grained sands (Figure 1.3) (Harris, 1980; 

Currie, 1998). 
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CHAPTER 3 

DATA AND METHODOLOGY 

To address the goals of this study, the following data were collected: 

1. Forty-two measured sections totaling approximately 270 meters that document 

sedimentary structures, grain size and composition, and bedding surfaces at 

centimeter resolution (Figure 3.1). 

2. Paleocurrent measurements (n=3810) collected from lineations, planes, barest 

surfaces, and channel margins. (Figure 3.2); 

3. Gigapan photopanels were used to document story and bedset boundaries, 

facies locations, and thickness measurements of the paleochannel belt (Figure 

3.3).   

4. Morphometric characteristics of the channel belt including: width (w), thickness 

(t), sinuosity (s), radius of curvature (Rc), bend curvature (Rc/w), aspect ratio 

(w/t), and wavelength (λ) (Table 3.1).   

These data were used to construct three cross-sections: a depositional-dip oriented 

cross-section on the north side of Segment 4, depositional-dip cross-section on the 

south side of Segment 4, and a deposition-strike-orientated cross-section on Segment 5 

(Figure 3.1).  The cross-sections document key stratal boundaries-the philosophical 

framework for identifying stratal boundaries is discussed below.  Complimentary, 

annotated gigapan photopanels were used to document lithofacies, which in turn were 

used to calculate lithofacies proportions (Figure 3.1 and Appendix 2).  Numbers in the 

cross-sections correlate to similar stories on each side of the channel belt.  These 

numbers were assigned based on the data collected and available (Figure 3.1).  The top 

of the channel belt is interpreted with a dashed line (Figure 3.1).   
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3.1 Fluvial Hierarchy 

Bed, bedsets, and stories are recognized and documented in the studied outcrop.  

The fluvial hierarchy used in this study is based on Ford and Pyles (2014) (Figure 1.2), 

and is similar to Campbell (1967), and Van Wagoner et al (1990).  A bed is defined as, 

“a relatively conformable succession of genetically related laminae or lamina-sets 

bounded by surfaces (called bedding surfaces) of erosion, non-deposition, or their 

correlative conformities” (Campbell, 1967, pg. 12).  At this location, bed boundaries are 

usually amalgamated (sand-on-sand contact) due to erosion by successive beds 

(Figure 3.1).  Occasionally, beds have topset preservation and its full foreset is 

preserved.  Campbell (1967) defines bedset as, “a relatively conformable succession of 

genetically related beds bounded by surfaces (called bedset surfaces) of erosion, non-

deposition or their correlative conformities” (Campbell, 1967, pg. 20).  A bedset in the 

outcrop is bounded by erosional surfaces that are laterally persistent, and document 

abrupt grainsize differences.  The base of a bedset is a coarser grained (upper to lower 

medium) than in top (lower medium to upper fine), meaning they have a fining upward 

profile within each bedset (Figure 3.1).   

A story is “a meso-scale volume of strata formed from genetically related beds or 

bedsets produced by the migration, fill or overbank discharge of a single fluvial system” 

(Ford and Pyles, 2014, pg. 1281).  In this field area, a story is recognized by 

superposition and cross-cutting relationships.  Younger stories cross-cut and locally 

erode into an older and previously deposited story.  Figure 3.1 depicts colored 

polygons, where each polygon represents an individual story.  The cross-section 
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documents how younger stories cross-cut into the older stories.  Individual stories also 

display components of both lateral accretion and downstream accretion.  

Two types of stories are recognized: lateral and downstream (Lateral accretion 

dominated areas and downstream accretion dominated areas within stories were 

distinguished from one another by the strike and dip of the bedset surfaces.  If a bedset 

surface has a strike that is parallel or subparallel (±20°)  to the documented paleoflow 

(Figure 3.2), it was categorized as a lateral accretion surface, whereas if a bedset 

surface had a strike that is perpendicular or subperpendicular to paleoflow, that surface 

was categorized as a downstream accretion surface.  Strike readings were plotted 

(Figure 3.2) and accretion type dominated areas could be separated from each other 

(Figure 3.1).   

3.2 Lithofacies 

This study uses Gressly’s (1838) definition of lithofacies as, “those observable 

physical, chemical and biological properties of rocks that collectively permit the 

objective description, as well as distinctions among rocks of different types” (Translation 

from Cross and Homewood, 1997, pg. 1620).  Three lithofacies were identified in this 

study.  Each lithofacies is distinguished by grain-size and sedimentary structures.  

Descriptions and photographic examples are presented in Table 3.2 and Figure 3.4, 

respectively, and an example of an annotated cross-section is shown in Figure 3.3.  

Other examples are included in Appendix 2. 
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Figure 3.2:  Satellite image of the study area.  Segments 4 and 5 of Channel Belt A are the main focus of this study.  The 

locations of collected paleocurrents are plotted on top of each segment.  A total of 3,810 paleocurrents were collected 

from different sources (listed in key) and yielded an average paleocurrent direction of 057.
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Location: Figure 2.2
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Figure 3.3:  Representative photopanel from the central part of the study area.  A) Uninterpreted photopanel.  B) Photopanel with 

bedset (bar) contacts and locations of thickness measurements when gathering measured sections.  C) Facies polygons used for 

lithofacies proportion analysis, and the same thickness measurements as B.  See Figure 3.2 for location of photopanel.  (See 

Appendix B for a complete series of panels around the studied segment)

16

MS #23

0.9
2.2

3.4
4.8

6.7
6.2

MS #21

5.75
4.3

3.0
2.25

1.2
0.0

MS #20

1.3

0.0

3.3

5.2

6.4

MS #19

0.0

1.4

3.1

4.7
3.7

MS #8

0.0

1.45
2.55 3.0

4.8

6.0
6.35 MS #3

0.0

0.85
2.1 2.6

4.0
5.0

6.2 MS #18

0.0
0.9

1.9
3.4
4.85.6
6.0

MS #17

0.0

2.0
2.6

3.8
4.6

6.7

0.0

VE: 2x

MS #23 MS #21 MS #20 MS #19 MS #8
MS #3

MS #18 MS #17

Inflection Point Inflection Point

Inflection Point Inflection Point

Inflection Point
Inflection Point

Inner Bend

Inner Bend

Inner Bend

VE: 2x

VE: 2x

Outside Bend

Outside Bend

Outside Bend

6 m

6 m

6 m



Conglomerate Cross-stratified sandstone Ripple to Planar Laminated

Figure 3.4:  Photographic examples of the 3 lithofacies of the studied interval.  Descriptions and interpretations are 

summarized in Table 3.2.
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Table 3.1: Morphometric characteristics of Channel A Segment 4 based on 
measurements taken from Google Earth.  

Width (w) 80 meters

Average thickness 6.3 meters

Sinuosity (s) 1.2

Radius of curvature: Right bend (Rc) 175 meters

Radius of curvature: Left bend (Rc) 220 meters

Bend curvature (Rc/w): Right bend 2.2

Bend curvature (Rc/w): Left bend 2.8

Aspect ratio (w/t) 12.7

Wavelength (λ) 845 meters

Sinuosity=Channel meander distance divided by horizontal distance
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Table 3.2:  Descriptions of the 3 lithofacies identified in this study.  See Figure 3.4 for photographic examples. 

Color in Facies 
Polygons Facies Name Grain Size Description Interpretation

Conglomerate
Upper Medium to 
Lower Coarse

Poorly sorted conglomerate containing
paleosol and quartzite clasts up to 10 cm 
and 3 cm, respectively.  Unstructured to 
cross-stratified bedding that terminates
into underlying paleosol.  Sharp to 
gradational upper contact, and sharp 
lower contact.

Lower flow-regime; tractive
deposition; very high energy

Cross-stratified 
sandstone

Lower Medium to 
Lower Coarse

Large-scale trough-cross bedding
containing laminations that dip between 
2° and 30° and range in thickness 
between 0.5 cm to 3 cm.  Commonly 
contains rip-up clasts from adjacent 
mudstone.  Slight upward-fining 
sequences that go from lower coarse
sand to upper medium, or upper medium 
to lower medium sands.  Reactivation
surfaces are rarely observed. This 
lithofacies is often burrowed when it 
occurs at the top of the channel belt.
Both sharp to gradational upper and lower 
contacts with other facies.

Lower flow-regime; tractive 
deposition; high energy

Ripple-to-planar
Laminated 
Sandstone

Upper Fine to 
Upper Medium

Ripple-to-planar laminated sandstone 
with laminations ranging from 0.1 to 1 
cm.  Rippled sandstone dominantly 
composed of upper fine to, rarely, lower 
medium.  Planar-laminated sandstone is 
composed of lower medium to upper 
medium.    Undulose laterally.  Can be 
burrowed or bioturbated.  Climbing 
ripples present, but rare.  Gradational-to-
sharp upper and lower contacts.

Lower flow-regime; tractive 
deposition; low energy
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CHAPTER 4 

RESULTS 

  The cross-sections and maps (Figure 4.1 and 4.2) document the facies 

distributions and paleo-geomorphology of the studied segment of Channel Belt A 

(Figure 2.2A).  Each of these are discussed below. 

Segments 4 and 5 of Channel A are exceptional exposures that document a 

complete wavelength of sinuosity (850 m) of an ancient channel belt.  Two bends were 

documented, and associated straight portions (inflection points) of the channel belt were 

documented (Figure 1.3).  Key geomorphic measures of the channel belt are the 

following (Table 3.1).  The studied segment has a sinuosity (s) of 1.2. The radius of 

curvatures (r) of the left bend is 220 m and the right best is 175 m.  A width (w) of 80 

meters was documented at a point where there is complete preservation of the 

channel’s margins (at Segment 5, Figure 1.3). The average thickness (t) is 6.3 meters, 

leading to an aspect ratio (w/t) of 12.7. 

  Figure 4.1 documents lithofacies distributions in the studied channel belt by 

position: i.e. bends vs inflections.  The dominant lithofacies in the channel belt is cross-

stratified sandstone (83.5%).  The second most common lithofacies is conglomerate 

(11.4%), followed by ripple-to-planar laminated sandstone (5.1%).  Lithofacies 

relationships change by their geomorphic positions (i.e. outside bends, inside bends, 

and inflection points) and stratigraphic position in the channel belt (Figure 4.1).   Outer 

bends contain all lithofacies, but are dominated by cross-stratified sandstone.  For 

example the left bend contains cross-stratified sandstone (91.2%), conglomerate 

(8.1%), and ripple-to-planar laminated sandstone (0.7%).  Whereas the right bend 
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contains cross-stratified sandstone (90.2%), conglomerate (8.7%), and ripple-to-planar 

laminated sandstone (1.1%) (Figure 4.1).  Inner bends contain the highest abundance 

of ripple-to-planar laminated sandstone facies.  For example the left bend contains 

cross-stratified sandstone (65.1%), conglomerate (8.8%), and ripple-to-planar laminated 

sandstone (26.1%), whereas the right bend contains cross-stratified sandstone (87.7%), 

conglomerate (5.0%), and ripple-to-planar laminated sandstone (7.4%) (Figure 4.1).  

Ripple-to-planar laminated sandstone lithofacies decrease downstream from inside 

bends (Inflection point 2: 24.2%, Inflection point 3: 2.9%).  The inflection points located 

downstream from outside bends lack ripple-to-planar laminated sandstone facies.  For 

example, Inflection point 2 contains cross-stratified sandstone (85.3%), and 

conglomerate (14.7%), and is lacking ripple-to-planar laminated sandstone (Figure 4.1).  

The same is true for Inflection point 3, and it contains cross-stratified sandstone 

(77.1%), conglomerate (22.9%), and is lacking ripple-to-planar laminated sandstone 

(Figure 4.1).   

 The sandstone in this channel belt is continuous across the entire channel belt.  

No mud drapes or mud plugs are documented in the studied channel segments.  The 

only mud units within the channel belt are intra-formational rip-up clasts within the 

conglomerate.  While sandstone is fully continuous, bedsets and stories are not (Figure 

3.1).  The most continuous bedset is 95% the wavelength of the outcrop.  The most 

continuous stories on each side of the outcrop do not persist the entire wavelength.   
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channel belt: outer bends, inner bends, and inflections points.  Squares with similar colors represent corresponding 

geomorphic positions.  This channel belt segment is largely dominated by cross-stratified sandstone.  Outer bends 
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Figure 2.2



B) Conglomerate

250 m

Contour Interval: 5%

N

Figure 4.2:  A) Isopach map of the studied segment of the channel belt.  B) Percent 

thickness contour map of the conglomerate lithofacies.  Conglomerate is present 

throughout the entire channel belt, but the thickest concentrations are located in the 

straight reaches (inflection points) of the channel belt.  C) Percent thickness contour 

map of the cross-stratified sandstone lithofacies.  This is the most prevalent lithofa-

cies and its thickest areas are where the conglomerate is thinnest.  D) Percent thick-

ness contour map of the ripple-to-planar laminated sandstone lithofacies.  This litho-

facies has very localized concentrations in bends.  Each lithofacies contour map is 

depicted at the same scale.  Refer to Figure 2.2 for location. 
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CHAPTER 5 

DISCUSSION 

5.1 Continuity and Applications 

 Using photopanels and measured sections the longitudinal persistence of 

sandstone, bedsets, and stories were documented in the field.  Sandstone within the 

outcrop is longitudinally persistent through the entire wavelength (Figures 3.1, 4.1, 4.2).  

While the channel belt is completely filled with sand, it still has grain-size variations and 

abrupt juxtapositions of grain sizes, although there is a lack of fine-grained sediment 

(i.e. clay and silt).  These patterns are evident in the distribution of lithofacies (Figures 

4.1 and 4.2) and are documented in detailed stratigraphic columns (Figure 3.1 and 

Appendix 1).  The lack of fines is possibly due to perennial flow conditions, meaning 

there was a constant flow of fluids through the channel, leading to constant entrainment 

of clay and silt during the life span of the channel belt. 

 While sandstone is continuous across the entire interval, bedsets and stories are 

not.  Figure 3.1 depicts cross-sections that document the bedset contacts for both sides 

of the outcrop.  Younger bedsets cross-cut and erode into the previously deposited, 

older bedsets.  Because of this erosion, the most longitudinally persistent bedset is 95% 

of the outcrop wavelength (Figure 3.1).  Stories are also persistent for only a portion of 

the outcrop’s wavelength.  The most continuous story is colored in yellow on the 

southside of the channel belt and is continuous for 95% of the channel belt. 

   The observations listed above provide enhanced context for fluvial studies, 

fluvial reservoir models and fluvial physical experiments.  Donselaar and Overeem 

(2008) document a difference in sandstone continuity based on different channel-fill 
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styles (Figure 1.1).  Finer-grained channel fills result in low sandstone continuity, 

whereas sandier fill results in high sandstone continuity.  The studied segments of 

Channel Belt A in the Cedar Mountain Formation are most similar to the channel belt 

model that has a sand fill with highly continuous sandstone in which the channel belt is 

filled with both lateral and downstream accreting bars (Figure 1.1A).  Observations 

documented herein can be used to constrain intra-channel belt sedimentary structures, 

facies and their spatial locations within reservoir models of this style of channel belt.  

Figures 4.1 and 4.2 are notable data sets that can be used to constrain the proportions 

of overall lithofacies, accretion type and proportions, and lithofacies by accretion type in 

distinct areas of a channel belt.  Static fluvial reservoir models can be constructed with 

these proportions to better represent the internal heterogeneity documented in a natural 

system.  This internal heterogeneity can be useful to characterize flow units and 

permeability zones.   

Chilingar (1964) documented relationships between porosity, permeability, and 

grain-size:  as grain-size increases, so do porosity and permeability.  Masch and Denny 

(1966), and Slatt et al. (1993) also reported similar results in regards to permeability and 

grain-size distribution from natural systems.  This concept has significance for storage 

capacity and permeability distributions in fluvial sandstone reservoirs.  When combining 

the permeability and grain-size distributions with the results of this research, fluvial 

reservoir models can be constrained.   Collectively the data can predict of permeability 

streaks or zones based on facies locations.  For example, the conglomerate lithofacies 

has variable thickness of 10 cm in the bends to 150 cm in the inflection points, however 

it present (although in particularly small proportions) throughout the entire channel belt 
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(Figure 4.1).  The conglomerate lithofacies has the largest grain-size of the three 

lithofacies observed (Table 3.2) and, therefore, can be approximated to have the 

highest permeability.   McGuire et al. (1995), Le Heron et al. (2004), Shepherd (2009), 

and Gershenzon et al. (2014) state that many hydrocarbon reservoirs contain 

conglomerates, and conglomerates are the most permeable zones.  Often these zones 

are referred to as “thief zones” and are preferential pathways for subsurface fluid flow.  

These zones can also lead to early breakthrough of water in reservoirs connected to an 

aquifer and those undergoing secondary recovery such a water injection to increase 

hydrocarbon sweep efficiency (Gershenzon et al., 2014).  Water could preferentially 

flow to the high permeability area, compromising the sweep efficiency by producing 

hydrocarbons within the permeable area but bypassing the hydrocarbons in lower 

permeability, although volumetrically significant, areas (McQuire et al., 1995; Shepherd, 

2009; Gershenzon et al., 2014).  Additionally this research documents where the 

conglomerate occurs and its proportions in geomorphic location (Figure 4.1 and 4.2).  

The conglomerate lithofacies is documented to have the largest grain size of the three 

documented lithofacies.  Based on the previous discussion, if this Channel Belt A was a 

sandstone reservoir the conglomerate could be a thief zone where fluids would 

preferentially flow, and bypass hydrocarbons being held in the cross-stratified 

sandstone and ripple-to-planar laminated sandstone portions of the reservoir.  

Therefore, fluvial reservoirs models can be updated with permeability proxies and 

locations based on lithofacies’ grain-size, geomorphic location, and proportions. 
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5.2 Sequential Evolution and Flow Processes 

The sequential evolution of the channel belt was derived from cross-cutting 

relationships, superposition, and facies types.  The evolution of the channel belt is 

interpreted as follows: 1) channel down cutting and bypass, 2) deposition of 

conglomerate, 3) lateral migration of the channel and fill by laterally migrating and 

downstream migrating bars, 4) channel stabilization and final fill by downstream 

migrating bars until complete avulsion (Figure 5.1).  During the first phase (channel 

down cutting), the channel incised into the adjacent mudstone (see inset pictures in 

Figure 1.3) (Figure 5.1).  There are at least three possible process explanations for this.  

First, Parker et al. (2011) documented that high energy flows can erode into cohesive 

mudstone.  Second, Hajek and Edmonds (2014) interpret that during incision, channels 

associated with clay-rich overbank deposits indicate low sediment flux (Qs).  Third, 

Hajek and Edmonds (2014) link coarse-grained systems to steep gradients and high 

shear stress (τ) at low flow depths.  Lynds et al. (2014) express shear stress (τ) as 

 τ = ρf * g * d* s (5.1) 

where ρf  is fluid density, g is gravitational acceleration, d is flow depth, and s is slope.  

All these interpretations are equally plausible. 

The second phase of the channel’s evolution was deposition of conglomerate.  

Conglomerate was deposited along the entire base of the channel (Figure 4.1 and 4.2B) 

as the channel began migrated laterally (Figure 5.1), although the thickness of 

conglomerate is greatest in the inflection points (Figure 4.2).  The conglomerate is 

downlapped by laterally migrating and downstream migrating bars (Figure 5.1).  The 

conglomerate is composed of intraformational and extraformational clasts with an upper 
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medium and lower coarse sand matrix.  Parker et al. (2011) documented that cohesive 

floodplain material can be entrained in fluid flow due to erosion of the outer bank, and 

consequently the mudstone is carried downstream.  The intraformational mudclasts in 

the conglomerate are similar to and are derived from the adjacent mudstone.   

Extraformational clasts come from the Sevier Uplift and from the underlying Morrison 

Formation (Harris, 1980).  Intraformational mudclasts and extraformational clasts have 

sizes up to 10 cm and 3 cm, respectively.  We interpret the conglomerate to have 

deposited under high shear stress (τ) that was able to entrain both mud rip-up clasts 

and extraformational clasts and move them downstream, while also maintaining a sand 

suspended load (Dietrich et al., 1989; Lynds et al., 2014).   

Phase three of channel evolution is a low energy manifestation of processes in 

Phase 2.  Figure 4.2A documents the thickest portions of the channel belt are in the 

bends and thinner areas are in the straight reaches (inflection points).   It is also 

documented that the thickest proportions of conglomerate are in the straight reaches 

(inflection points) and thickest proportions of cross-stratified sandstone are in the bends.  

This can be explained by a combination of Equation 5.1and helical flow.  Corney et al. 

(2006, pg. 249-250) state helical flow is created by an imbalance of the curvature-

induced centrifugal acceleration of flow and an inwardly directed radial pressure 

gradient, which results from the super-elevation of the water surface at the outside 

bend.  Helical flow creates a higher flow depth (d) on the outside bend, and therefore 

increases τ on the outside bend, and the opposite is true of the inside bend.  Therefore, τ is high enough on the outside bend to erode into the mudstone so the channel can 

migrate laterally and deepen, while also depositing the smaller grain sizes (ripple-to-
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planar laminated sandstone, Figure 4.2D) on the inside bends as laterally accreting and 

downstream migrating bars.  It also means that when exiting the bends and the helical 

flow has decreased or is nonexistent the boundary shear stress (τ) is not high enough 

to transport large clasts and sands any longer, resulting in thicker portions of 

conglomerate in the straight reaches (inflection points) of the channel (Figure 4.2B).  

Fourth, downstream migrating bars are documented to downlap on to laterally migrating 

bars in bends and fill the remaining space in the straight reaches (inflection points) 

(Figure 5.1).  As downstream migrating bars filled the remaining space in the channel, 

the flow depth (d) decreased, thus continually decreasing τ (equation 5.1).  This 

continued until the channel was completely filled and fluid flow avulsed to a new 

location.   
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CHATPER 6 

CONCLUSIONS 

This thesis documents the lithofacies distributions by geomorphic location in a 

segment of one channel belt in the Cedar Mountain Formation.  The studied channel 

belt is predominantly cross-stratified sandstone, with lesser amounts of conglomerate 

and ripple-to-planar laminated sandstone.    Because this channel belt is filled with sand 

from both laterally accreting bars, and downstream accreting bars it is most similar to 

the sand channel fill model of Donseelar and Overeem (2008).  Sandstone is 

continuous throughout the entire outcrop, however bedsets and stories are not.  Based 

on cross-cutting relationships, superposition, and facies types the sequential evolution 

was interpreted along with the flow processes in each stage.  Incision into the adjacent 

mudstone by high velocity fluids create a channel for fluid and sediment to be 

transported through.  A conglomerate consisting of intraformational and extraformational 

clasts was continually deposited at the base of the channel as it began to laterally 

migrate.  Finally, the channel stabilized and filled with both laterally migrating and 

downstream migrating bars simultaneously until it was completely filled and avulsed to a 

new location.  Concepts developed here provide context for fluvial reservoir modelling 

and fluvial physical experiments. 
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APPENDIX A 

Measured Sections and Cross Sections—SUPPLEMENTAL ELECTRONIC MATERIAL 

  

 Appendix A comprises measured sections and cross sections of Channel Belt A, 

Segments 4 and 5 of the Cedar Mountain Formation. 

Measured_Sections.PDF Compiled document of measured sections 
that were documented in the study area. 

Cross_Sections.PDF Cross sections created from measured 
sections of Channel A, Segments 4 and 5.  
This is a larger version of Figure 3.1. 
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APPENDIX B 

Outcrop Photopanels—SUPPLEMENTAL ELECTRONIC MATERIAL 

 Appendix B comprises uninterpreted and interpreted photopanels of the study 

area. 

Photopanels.PDF Uninterpreted and interpreted photopanels 
of the study area 

Photopanel_Location.PDF Shows the locations of where photopanels 
were taken and the outcrop they view 
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