

Carrie (CJ) McClelland, P.E.

cmcclell@mines.edu

Fluid Mechanics FE Review

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

In the review session, we will be working some of these problems. Feel free to come to the session, or work the problems on your own. I am happy to answer your email questions or those that you bring to the session.

Good luck!

PPI

Fluid Mechanics FE Review MAJOR TOPICS Fluid Properties Fluid Statics Fluid Dynamics Fluid Measurements Dimensional Anaysis

Property	Symbol & Equation	Definition	Etc.
Density	$ ho=rac{m}{lash}$	<u>mass</u> volume	
Specific Weight	$\gamma = ho g$	density x gravity	
Specific Gravity	$SG = \frac{\rho_x}{\rho_{water}} = \frac{\gamma_x}{\gamma_{water}}$		
Viscosity	$\mu = \frac{\tau}{du/dy}$	shear stress velocity gradient	
Kinematic viscosity	$v = \frac{\mu}{\rho}$	viscosity density	
ldeal Gas Law	$p = \rho R_{gas} T$	Use to find properties of gasses	$R_{gas} = \frac{\bar{R}}{molec.wt.}$

FFR

PPI

Mach Number

2. A jet aircraft is flying at a speed o f 1700 km/h. The air temperature is 20°C. The molecular weight of air is 29 g/mol. What is the Mach number of the aircraft?

Professional Publications, Inc.

Fluid Mechanic	CS			9-2a1		
Fluid Statics						
Gage and Absolute Pressure Hydrostatic Pressure						
$\tilde{\rho}_{\text{absolute}} = \rho_{\text{gage}} + \rho_{\text{atme}}$	1					
		$(z_2 - z_1)$				
Example (FEIM): In which fluid is 700 kPa first achieved?						
		p ₀ = 90 kPa				
	60 m	ethyl alcohol ₽ ₁ ¥	7.586 kPa/m	PiEPo + Vale(box)		
	10 m	oil p2	8.825 kPa/m	P2 = 12, + Yoj1 (10, -)		
	5 m	water p_3	9.604 kPa/m	$P_3 = P_2 + Y_{H_{20}}(S_m)$		
<i></i>	5 m	glycerin	12.125 kPa/m	P4-P3+844 (5m)		
(A) ethyl alcohol (B) oil (C) water				רן -		
(D) glycerin				Ans: D		
Professional Publications. Inc. FERC						

<text><equation-block><equation-block><equation-block><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Fluid Statics

FORLES ON SUBMERGED SURFACES : FORLES ACT @ CENTER OF PRESSURE F= YOLUME OF PRESSURE PRISM OR F= YAZc SIND LOCATION = CENTROLD OF PRESSURE PRISM OR y = Iyzz I = ZcA Volume BLOYANCY : Fundant = Y fluid Hisplaced

PPI

Fluid Dynamics

Similation Geometric Similarity: Model is true to length, area $\frac{1}{2}$ volume kinematic Similarity: Flow Regimes of model 4 prototype are the same by namic Similarity: Ratios of all types of forces are equal for model $\frac{1}{2}$ prototype Met if following Simultaneous equations are satisfied for model $\frac{1}{2}$ prototype $\left[\frac{prt^{2}}{p}\right]_{m} = \left[\frac{prt^{2}}{p}\right]_{p}$; $Re_{m} = Re_{p}$; $Fr_{m} = Fr_{p}$; $Ca_{m} = Ca_{p}$; $We_{p} = Wem$ $Re = \frac{vl_{p}}{T}$; $Fr = \frac{vr^{2}}{k_{q}}$; $C_{q} = \frac{pvr^{2}}{E}$; $We = \frac{pl_{q}r^{2}}{r}$ In other words... Dimensionless parameters must be equal between the model and prototype (Each dimensionless parameters is a ratio of different types of forces being exerted on the fluid). For example: For completely submerged models/prototypes and pipe flow, the Reynolds numbers must be equal to revers, dams, ships, and open channels, the Frouge flow, the Reynolds numbers must be equal.

