

	Var	iable Rel	ation	אין איז	NSCORP
Desired Quantity	=	Given Quantity	X	Appropriate Factor	
F	=	Р	Х	F/P _{i,n}	
F	=	Α	х	$F/A_{i,n}$	
Р	=	F	х	P/F _{i,n}	
Р	=	А	х	$P/A_{i,n}$	
Α	=	F	х	A/F _{i,n}	
Α	=	Р	х	A/P _{i,n}	
Α	=	G	х	A/G _{i,n}	
				Pg I	17

Pg 17

/41		Economic Evaluation and Inv			tion and Inves	tment Decisio	n Method		
			i = 1	0.00%					
n	F/Pi,n	P/Fi,n	F/Ai,n	A/Fi,n	A/Pi,n	P/Ai,n	A/Gi,i		
1	1.1000	0.9091	1.0000	1.00000	1.10000	0.9091	n/		
2	1.2100	0.8264	2.1000	0.47619	0.57619	1.7355	0.476		
3	1.3310	0.7513	3.3100	0.30211	0.40211	2.4869	0.936		
4	1.4641	0.6830	4.6410	0.21547	0.31547	3.1699	1.381		
5	1.6105	0.6209	6.1051	0.16380	0.26380	3.7908	1.810		
. 6	1.7716	0.5645	7,7156	0.12961	0.22961	4.3553	2.223		
7	1.9487	0.5132	9.4872	0.10541	0.20541	4.8684	2.621		
8	2.1436	0.4665	11.4359	0.08744	0.18744	5.3349	3.004		
9	2.3579	0.4241	13.5795	0.07364	0 17364	5 7590	3.372		
10	2.5937	0.3855	15.9374	0.06275	0.16275	6.1446	3.725		
11	2.8531	0.3505	18.5312	0.05396	0.15396	6.4951	4.064		
12	3.1384	0.3186	21.3843	0.04676	0.14676	6.8137	4.388		
13	3.4523	0.2897	24.5227	0.04078	0.14078	7.1034	4.698		
14	3.7975	0.2633	27.9750	0.03575	0.13575	7.3667	4.995		
15	4.1772	0.2394	31.7725	0.03147	0.13147	7.6061	5.278		
16	4.5950	0.2176	35.9497	0.02782	0.;2782	7.8237	5.549		
17	5.0545	0.1978	40.5447	0.02466	0.12466	8.0216	5.807		
18	5.5599	0.1799	45.5992	0.02193	0.12193	8.2014	6.052		
19	6.1159	0.1635	51,1591	0.01955	0.11955	8.3649	6.286		
20	6.7275	0.1486	57.2750	0.01746	0.11746	8.5136	6.508		

EXAMPLE THE SET OF S

Pg 19

74	1		Eco	nomic Evalua	tion and Inves	tment Decisio	n Method
			i = 1	0.00%			
n	F/Pi,n	P/Fi,n	F/Ai,n	A/Fi,n	A/Pi,n	P/Ai,n	A/Gi,
1	1.1000	0.9091	1.0000	1.00000	1.10000	0.9091	n/
2	1.2100	0.8264	2.1000	0.47619	0.57619	1.7355	0.476
3	1.3310	0.7513	3.3100	0.30211	0.40211	2.4869	0.936
4	1.4641	0.6830	4.6410	0.21547	0.31547	3.1699	1.381
5	1.6105	0.6209	6.1051	0.16380	0.26380	3.7908	1.810
. 6	1.7716	0.5645	7 7156	0 12961	0.22961	4 3553	2 223
7	1.9487	0.5132	9 4872	0 10541	0 20541	4 8684	2 621
8	2.1436	0.4665	11 4359	0.08744	0 18744	5 3349	3 004
9	2.3579	0.4241	13,5795	0.07364	0.17364	5 7590	3.372
10	2.5937	0.3855	15.9374	0.06275	0.16275	6.1446	3.725
11	2 8531	0.3505	18 5312	0.05396	0 15306	6 4051	4 064
12	3 1384	0.3186	21 3843	0.04676	0.14676	6 8137	4 388
13	3.4523	0.2897	24 5227	0.04078	0 14078	7 1034	4 698
14	3.7975	0.2633	27 9750	0.03575	0 13575	7 3667	4 995
15	4.1772	0.2394	31.7725	0.03147	0.13147	7.6061	5.278
16	4 5950	0.2176	35 0407	0.02782	0.2782	7 8237	5 549
17	5 0545	0 1978	40 5447	0.02466	0.12466	8 0216	5 807
18	5.5599	0.1799	45 5992	0.02193	0 12193	8 2014	6.052
19	6.1159	0.1635	51,1591	0.01955	0.11955	8.3649	6.286
	6 7275	0.1486	57.2750	0.01746	0.11746	8.5136	6.508

Example 2-7 Time Value of Money Factors and Timing Considerations

Pg 24

Next, determine the five equal end of year payments "A," at years one through five that would be equivalent to the stated payments.

Finally, recalculate the present value assuming the same annual payments are treated first, as beginning of period values and second, as mid-period values.

						Nestm	INTEVALUATIONSCORP
Example	e 2-'	7 Tim	e Zei	o Lu	mp S	um	
Settleme	nt]	Based	on E	nd of	f Peri	od Valu	les
P = ?	-	\$300	\$400	\$400	\$400	\$500	
1	0	1	2	3	4	5	
0.9174 P = 300(P/F _{0.001})+4	0. 400(P	8417 /Fog. 2)+4	0.772 00(P/Fa	2 (~ _)+400).7084 (P/Fog. 4)	0.6499 +500(P/Fac	_c) = \$1,529
or,		978,2	、 · ,	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< · 970,4/		, , ve
$0.9174 P = 300(P/F_{9\%,1})+4$	2. 400(P	5313 0. /A _{9%,3})(F	9174 P/F _{9%,1})+	0.649 500(P/F	9 _{9%,5}) = \$1	1,529	
							Pg 24

Continuous Interest on Discrete Values (not covered in EBGN/CHEN 321)

INVESTMENTEVALUATIONSCOPP

$$\begin{split} F/P_{r,n} &= e^{rn} \\ P/F_{r,n} &= 1/e^{rn} \\ F/A_{r,n} &= (e^{rn} - 1)/(e^{r} - 1) \\ A/F_{r,n} &= (e^{r} - 1)/(e^{rn} - 1) \\ P/A &= (e^{rn} - 1)/(e^{r} - 1)e^{rn} \\ A/P_{r,n} &= (e^{r} - 1)e^{rn}/(e^{rn} - 1) \end{split}$$

r = nominal interest rate compounded continuously n = number of discrete evaluation periods e = base of natural log (ln) = 2.7183 . . .

Overview of Continuous Interest

- Same timing assumptions as discrete compounding
- You can calculate the effective rate from a continuous rate using the formula: $E = e^r 1$

• The Effective rate determined on a daily basis will not be significantly different than a continuous interest rate.

Example 3-1 Time Diagrams P=? I=200 I=300 I=400 I=500 A) 0 2 3 4 1 I=500 I=400 I=300 <u>I=2</u>00 P=? B) ō 1 2 3 4 Pg 65

Pg 65

INVESTMENTEVALUATIO

			אין אין איז
Example 3	3-3 Soluti	on PW Equ	ation
C=20,000	I=2,000	I=2,000	I=2,000
0	1	2	10 L=25,000
Present Worth	(PW) Equati	on at Time 0 to	Determine "i"
20,000 = 2,000(1)	$P/A_{i,10}$) + 25,0	000(P/F _{i,10})	
Mathematically	the equation	n is:	
20,000 = 2,000[$(1+i)^{10}-1]/$	$[i(1+i)^{10}] + 25$	5,000[1 / (1 + i) ¹⁰]
			Pg 70

Pg 71

Linear Approximation of Present Worth Equation

11.46% 11.5% 12.0%

ROR (i)

0% 10.0%

Interpolation Error (11.5% - 11.46%)

						ויין ואפאדאפאזענענענער איין איין איין איין איין איין איין איי
E	xar	nple 2-17	– Loa	n Amo	ortizati	on
	<u>Yr</u>	Beg. Balance	<u>Payment</u>	Interest	<u>Principal</u>	Ending Balance
	1	\$10,000	\$2,638	\$1,000	\$1,638	\$8,362
	2	8,362	2,638	836	1,802	6,560
	3	6,560	2,638	656	1,982	4,578
	4	4,578	2,638	458	2,180	2,398
	5	2,398	2,638	240	2,398	0
						Pg 41

Example 3-21 ROR, & NPV

A five-year project requires investments of \$120,000 at time zero and \$70,000 at the end of year one to generate revenues of \$100,000 at the end of each of years two through five. The investor's minimum rate of return is 15.0%. Calculate the Project ROR. Also, calculate the NPV. Calculate the project payback period and finally, draw an NPV Profile to show how the value of the project is impacted by the selected discount rate.

Pg 116

Text Problem 3-20	Pg. 167-68

					NVESTME	NTEVALUATION
Problem 3-	20, 21	or 22	Soluti	ions		
Year	0	1	2	3	4	5
Revenues		14,000	8,000	6,000	4,400	2,800
-Royalty Cost		-1,750	-1,000	-750	-550	-350
Net Revenue		12,250	7,000	5,250	3,850	2,450
-Operating Cost		-1,750	-1,000	-750	-500	-250
-Mine Develop.	-7,500	-2,500				
-Equipment		-6,700				
-Lease Bonus	-1,000					
Before-Tax CF	-8,500	1,300	6,000	4,500	3,350	2,200
				So	l. Man. P	g 61-3

					Nestme	NTEVALUATIONS
Problem 3-2	0 Brea	akever	ı Solut	tion		
X = Br	eak-even U	Jniform S	elling Pric	e Per Uni	t:	
Year	0	1	2	3	4	5
Revenues		175X	100X	75X	55X	35X
-Royalty Cost		-21.9X	-12.5X	-9.4X	-6.9X	-4.4X
Net Revenue		153.1X	87.5X	65.6X	48.1X	30.6X
-Operating Cost		-1,750	-1,000	-750	-500	-250
-Mine Develop	-7,500	-2,500				
-Mine Equip.		-6,700				
-Lease Bonus	-1,000					
Before-Tax CF	-8,500	153.1X	87.5X	65.6X	48.1X	30.6X
		-10,950	-1,000	-750	-500	-250
					Sol. Mai	1. Pg 61-3

3.14 ROR, NPV and PVR Analysis For Service Producing Investments With Equal Lives For rate of return, net value or ratio analysis of

For rate of return, net value of ratio analysis of alternatives that provide a service, investors must make an "incremental analysis" of alternatives. Incremental analyses are made to determine if the additional up front investment(s) in the more capital-intensive alternative generates sufficient reductions in downstream operating costs (incremental savings) to justify the investment.

Pg. 141

•

• Mutually Exclusive Alternatives

- Examples Include Develop vs Sell or, Joint Ventures, Buy vs. Explore, Financial Constraints, or Manpower Constraints.
- When Applying Criterion, Biggest Economic Measure Not Always Best!
- Incremental Analysis is the Key Concept!
- Non-Mutually Exclusive Alternatives
- Ranking Exploration Prospects
- More than one alternative may be selected
- Objective to Maximize Cumulative Wealth!

Pg 183

6.5 Expected Value Analysis

- <u>Expected value</u> is defined as the difference between expected profits and expected costs.
 - <u>Expected profit</u> is the probability of receiving a certain profit times the profit.
 - <u>Expected cost</u> is the probability that a certain cost will be incurred times the cost.
- A positive expected value is necessary, but not always a sufficient condition for an economically satisfactory investment in light of the perceived uncertainty and financial risk.

Pg 327

, 					h4++	MESTMENT EVALUA
Table 7	-3 MA	CRS De	eprecia	ation Ra	ates	
	3-Year	5-Year	7-Year	10-Year	15-Year	20-Year
Year		The MAC	RS Deprec	iation Rate	is:	
1	.3333	.2000	.1429	.1000	.0500	.03750
2	.4445	.3200	.2449	.1800	.0950	.07219
3	.1481	.1920	.1749	.1440	.0855	.06677
4	.0741	.1152	.1249	.1152	.0770	.06177
5		.1152	.0893	.0922	.0693	.05713
6		.0576	.0892	.0737	.0623	.05285
7			.0893	.0655	.0590	.04522
8			.0446	.0655	.0590	.04522
9				.0656	.0591	.04462
10				.0655	.0590	.04461
Etc						
						P

E: De	xamp eprecia	le 7-7 tion Using Tabl	e 7-3	127 INESTMENTEVALUATIONSCOM
	Year	7-Yr Life Rate	Initial Basis	Depreciation
	1	0.1429	\$100,000	\$14,290
	2	0.2449	\$100,000	\$24,490
	3	0.1749	\$100,000	\$17,490
	4	0.1249	\$100,000	\$12,490
	5	0.0893	\$100,000	\$8,930
	6	0.0892	\$100,000	\$8,920
	7	0.0893	\$100,000	\$8,930
	8	0.0446	\$100,000	\$4,460
	Fotal	1.0000		\$100,000
				Pg 383

Book Value

Book value is the original cost basis minus the total depreciation taken.

Note: When using straight line depreciation for the FE you can not add up the remaining depreciation to calculate the book value.

Calcula our yea	te the book value ars of MACRS de	of the asset in Exa preciation?	mple 7-7 afte
Year	7-Yr Life Rate	Initial Basis	Depreciation
1	0.1429	\$100,000	\$14,290
2	0.2449	\$100,000	\$24,490
3	0.1749	\$100,000	\$17,490
4	0.1249	\$100,000	\$12,490
		Total Depreciati	on 68,760

Capitalized Cost Not Covered in EBGN/CHEN321

The present worth of the costs for a project with an infinite life is known as a capitalized cost. It is the amount of money at time period zero needed to perpetually support the project .

Capitalized Cost = $P = \frac{A}{i}$

Good Luck!

If you have any questions please stop by my office and I'd be happy to answer!

Andy Pederson

Engineering Hall #125 apederso@mines.edu apederson@me.com Cell: (253) 320-1485