Mathematical Methods in Physics HW8

1. Prove that $e^{z_{1}} e^{Z_{2}}=e^{z_{1}+z_{2}}$.
2. Consider the following functions with $z=x+i y$, and determine where, if anywhere, they are differentiable and/or analytic.
a) $w(z)=\frac{x^{6}-y^{4}+i\left(x^{5}+x^{3} y^{3}+x^{2} y^{2}+y^{5}\right)}{x^{3}+y^{2}}$
b) $w(z)=\frac{x+i y}{x+i y-1}$
c) $w(z)=\frac{|z|^{2}-z^{*}}{z^{*}}$
3. Consider $u(x, y)=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$.
a) Determine the values of a, b, c, d such that the function is harmonic.
b) Find the harmonic conjugate of $u(x, y)$.
c) Find an analytic function $w(z)=u(x, y)+i v(x, y)$ where $z=x+i y$.
4. Consider integrating the function $w(z)=z^{2}$ around a contour that is a square of side length L, centered around the origin with sides parallel to the real and imaginary axes. That is:
a) Show explicitly that the result is independent of the length L.
b) Use the Cauchy integral formula to find the value of $w(d)$ where d is real and $d<L$.

