Math Methods HW 1 Quiz

Name_____

You can try both problems below, but you will only receive credit for the most correct solution.

1. a. (5pts) Consider the set $\{-1,0,1\}$ with the operation of addition. Besides the usual addition rules, what extra conditions must be imposed in order this to form a group?

Comparing to the chart for any 3 element group $\begin{pmatrix} * & I & A & B \\ I & I & A & B \\ A & A & B & I \\ B & B & I & A \end{pmatrix}$ we see that I=0 and obviously

-1 + 1 = 0, -1 + 0 = -1, 1 + 0 = 1. Less obvious is that -1 + -1 = 1 and 1 + 1 = -1. That is

b. (5pts) Consider the set of all x, y, z such that x + y + z = 1. Do these form a vector space with ordinary + and \cdot playing their usual roles?

First of all does $\{V, +\}$ form a form an abelian group with identity (0,0,0)? No, since (0,0,0) does not satisfy the defining condition that x + y + z = 1. So no it does not.

2 a. (5pts) Recall that rational numbers are those that can be expressed by a ratio of integers, i.e. $\frac{a}{b}$ and include 0. Do the rational numbers form a field? Explain.

Yes they do. With addition, rationals add to other rationals to give rationals. The identity is 0 (which is rational) and the inverse is the negative of a rational number. Also the addition is abelian and associative. If we remove 0, then the remaining rationals form an abelian group under multiplication with 1 being the identity. The multiplication of two rationals gives another rational, and the multiplicative inverse is also rational. The multiplication is abelian and associative.

- b.(5pts) Consider two groups:
- i) The set of rotations in 2D that include $\{I, R_{90}, R_{180}, R_{270}\}$
- ii) the set of rotations in 3D that include $\{I, R_{x-180}, R_{y-180}, R_{z-180}\}$.

Are these two groups isomorphic? Explain.

No they are not. Forming the multiplication tables we find:

	I	R 90	R180	R270			ı	Α	В	С
1	1	R 90	R180	R270		1	- 1	Α	В	С
R 90	R 90	R 180	R 270		or	Α	Α	В	С	
R 180	R 180	R 270	- 1	R 90		В	В	С	- 1	Α
R270	R270	ı	R 90	R 180		С	С	I	Α	В

i)

	I	R x-180	R y-180	R z-180			ı	Α	В	С
1	1	R x-180	R y-180	R z-180		1	1	Α	В	C
R x-180	R x-180	1	R z-180	R y-180	or	Α	Α	- 1	С	В
R y-180	R y-180	R z-180	1	R x-180		В	В	С	- 1	Α
R z-180	R z-180	R y-180	R x-180	I		С	С	В	Α	- 1

ii)