Math Methods HW 6 Quiz

Name_____

You can try both problems below, but you will only receive credit for the most correct solution.

1. (10 pts) Consider the sequence of functions $f_n(x) = x^n$ on the interval [0,1] with inner product $(f_n, f_m) = \int_0^1 f_n^* f_m dx$. Show that the sequence is Cauchy.

Consider $||f_n(x) - f_m(x)|| = \sqrt{\int_0^1 |f_n(x) - f_m(x)|^2 dt}$. Taking n < m so that we can ignore the absolute value, this becomes: $||f_n(x) - f_m(x)|| = \sqrt{\int_0^1 [x^n - x^m] dt} = \sqrt{\frac{1}{n+1} - \frac{1}{m+1}}$.

For this to be Cauchy we want to show that: $||f_n(x) - f_m(x)|| < \epsilon$ for $n, m > N(\epsilon)$. Well,

 $\sqrt{\frac{1}{n+1}-\frac{1}{m+1}}<\epsilon\quad\Rightarrow\quad\frac{1}{n+1}-\frac{1}{m+1}<\epsilon^2. \text{ If we fix } n\text{, then the largest value the left hand side can obtain is when }m\to\infty. \text{ But the condition then becomes }\frac{1}{n+1}<\epsilon^2\quad\Rightarrow\quad n>\frac{1}{\epsilon^2}-1=N(\epsilon). \text{ We can lower }m\text{ to smaller values which will still satisfy this, but we can't bring }m< N(\epsilon)\text{, otherwise taking }n\to\infty\text{ will cause a problem. So overall, }n,m>\frac{1}{\epsilon^2}-1\text{ guarantees that }\|f_n(x)-f_m(x)\|<\epsilon.$

2. (10 pts) Consider the sequence $g_n(x) = \frac{x^n}{n}$ on the interval [0,1] with inner product $(g_n, g_m) = \int_0^1 g_n^* g_m dx$. Does this converge pointwise, uniformly or in the mean?

First of all we know that $\lim_{n\to\infty}g_n(x)=0=g(x)$ over the entire interval $x\in[0,1]$.

If we choose ϵ , then for convergence we need $|g(x) - g_n(x)| < \epsilon$ for all n > N. If N depends only on ϵ , then the convergence is uniform, whereas if it depends on both ϵ and x then it is pointwise.

Then we find: $|g(x) - g_n(x)| = \left| 0 - \frac{x^n}{n} \right| = \frac{x^n}{n} < \epsilon$

Now we can clearly see that $\frac{x^n}{n} \leq \frac{1}{n}$ for all $x \in [0,1]$. So we can argue that as long as $\frac{1}{n} < \epsilon$, or $n > \frac{1}{\epsilon}$, then certainly $\frac{x^n}{n} < \epsilon$. So the sequence converges uniformly, and hence it also converges pointwise and in the mean.