Question:	1	2	3	4	Total
Points:	10	14	12	14	50
Score:					

When applied to an input signal $p_{c}(t)$, an analog system produces an output signal $q_{c}(t)=p_{c}(t-a)$, for some specified system parameter a. Assume that you are given the digital sequence $p[n]=p_{c}(n T)$, where sampling interval $T=0.001 s$.
(a) [1 point] In words (not equations), what does this analog system do?
(b) [2 points] Under what condition can the analog signal $p_{c}(t)$ be reconstructed exactly from the digital sequence $p[n]$?
(c) [3 points] Assuming that this condition is satisfied, write the equation that shows how you could exactly compute $q_{c}(t)$ from $p[n]$.
(d) [1 point] For a single time t, what is the computational cost of computing $q_{c}(t)$? (How many multiplications?)
(e) [2 points] How would you make the computation of $q_{c}(t)$ more efficient, while still approximately correct?
(f) [1 point] What determines the accuracy of your more efficient approximation?
 Consider two digital low-pass filter systems H_{1} and H_{2}, where H_{1} is defined by its frequency response

$$
H_{1}(\omega)=\left\{\begin{array}{lll}
1 & ; & |\omega| \leq \pi / 2 \\
0 & ; & |\omega|>\pi / 2
\end{array}\right.
$$

and H_{2} is defined by its Z-transform

$$
H_{2}(z)=\frac{1}{4} z+\frac{1}{2}+\frac{1}{4} z^{-1} \quad, \quad 0<|z|<\infty .
$$

(a) [4 points] For both systems, sketch amplitude and phase responses for $0 \leq$ $\omega \leq \pi$. (Total of four sketches.)
(b) [2 points] What is the impulse response $h_{1}[n]$ corresponding to $H_{1}(\omega)$?
(c) [2 points] What is the impulse response $h_{2}[n]$ corresponding to $H_{2}(z)$?
(d) [2 points] For impulse response $h_{1}[n]$, write an equation for output samples $y[n]$ as a weighted sum of input samples $x[n]$.
(e) [2 points] Which low-pass filter system can be implemented more efficiently?
(f) [2 points] Which low-pass filter system is best? In what sense?

Question 3 . (12 points)
Consider a linear time-invariant filter implemented by the following computer program:

```
float xnm2 = 0.0f, xnm1 = 0.0f; // x[n-2] and x[n-1]
float ynm2 = 0.0f, ynm1 = 0.0f; // y[n-2] and y[n-1]
for (int n=0; n<lxy; ++n) {
    float xn = x[n];
    float yn = y[n] = xn-xnm1+xnm2+0.9*ynm1-0.81*ynm2;
    xnm2 = xnm1; xnm1 = xn;
    ynm2 = ynm1; ynm1 = yn;
}
```

(a) [2 points] What is the Z-transform $H(z)$ of this filter? (Include the ROC!)
(b) [2 points] Where are the two poles?
(c) [2 points] Where are the two zeros?
(d) [2 points] Is this filter stable? Is it causal?
(e) [4 points] Sketch the amplitude response $A(\omega)$ and phase response $\phi(\omega)$.

Consider a stable system with input $x[n]$ and output $y[n]$ related by

$$
y[n+1]-\frac{5}{2} y[n]+y[n-1]=x[n]
$$

(a) [2 points] What is the Z-transform $H(z)$ of this system?
(b) [2 points] Where are the two poles?
(c) [2 points] Where are the two zeros?
(d) [2 points] What is the region of convergence?
(e) [2 points] Is this system linear? Shift-invariant? Causal?
(f) [2 points] What is the impulse response $h[n]$ of this filter?
(g) [2 points] Write the loops that would implement this filter in a computer program.

