\qquad

Question:	1	2	3	4	5	Total
Points:	10	10	12	12	11	55
Score:						

Figure 1: A sequence $x[n]$ and its amplitude spectrum. The sequence $x[n]$ is not aliased and consists of 126 samples of a continuous signal $x_{c}(t)$. The periodic fluctuations are noise; the interesting signal is about -40 dB down.

Question 1
(10 points)
(a) [2 points] What is the time sampling interval T, in seconds?
(b) [2 points] What is the Nyquist frequency, in Hz ?
(c) [2 points] What is the frequency (in Hz) of the periodic fluctuations in $x[n]$.
(d) [2 points] Label the frequency axis below the amplitude spectrum.
(e) [2 points] As noted above, the periodic fluctuations are noise; the signal of interest is about -40 dB down. What does " -40 dB down" mean? Specifically, what is the ratio of signal amplitude to noise amplitude?
 Assume that you are given a discrete Fourier transform $X[k]$ of the sequence $x[n]$ of Figure 1. Assume also that a fast Fourier transform (FFT) was used, and that the number of samples after padding $x[n]$ with zeros was $N=250$.
(a) [2 points] If only positive frequencies ω are sampled, how many complex values are provided in the array $X[k]$?
(b) [2 points] For what sample indices k are the imaginary parts of $X[k]$ zero?
(c) [2 points] What is the frequency sampling interval $\Delta \omega$, in radians/sample?
(d) [2 points] What is the frequency sampling interval ΔF, in Hz ?
(e) [2 points] Imagine a simple filter that zeros amplitudes for frequencies between 1 and 3 Hz . To implement this filter, for what range of sample indices k would you zero $X[k]$?
 Design a causal notch filter to attenuate the periodic fluctations in $x[n]$ of Figure 1, as follows:
(a) [2 points] What is the frequency to be attenuated, in radians/sample?
(b) [2 points] Sketch the locations of filter poles and zeros in the complex z plane.
(c) [2 points] What is the system function $H(z)$ for your filter? (Include the region of convergence.)
(d) [2 points] Modify your system function $H(z)$ so that your filter does nothing at frequency zero (DC).
(e) [2 points] Write a constant-coefficient difference equation relating filter output $y[n]$ to input $x[n]$.
(f) [2 points] Write the main loop of a computer program that implements your filter.

Consider an LTI system with the following frequency response

$$
H(\omega)= \begin{cases}1, & \text { if }|\omega| \leq \pi / 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) [2 points] Sketch this frequency response $H(\omega)$ for frequencies ω in the range $-\pi \leq \omega \leq \pi$.
(b) [4 points] What is the impulse response $h[n]$ of this system?
(c) [2 points] Sketch the impulse response $h[n]$ of this system.
(d) [2 points] Suppose the sequence $x[n]$ of Figure 1 is input to this system to obtain an output sequence $y[n]$. Using the amplitude spectrum in Figure 1 as a guide, sketch the amplitude spectrum of the output sequence $y[n]$.
(e) [2 points] Such a system might be used prior to subsampling the sequence $y[n]$. Specifically, we might use it before computing $z[n]=y[2 n]$. Why?

Question 5 . (11 points)
Consider three moving-average filters with system functions:

$$
\begin{aligned}
H_{1}(z) & =\frac{1}{3}\left(1+z^{-1}+z^{-2}\right) \\
H_{2}(z) & =\frac{1}{3}\left(z^{2}+z+1\right) \\
H_{3}(z) & =H_{1}(z) H_{2}(z)
\end{aligned}
$$

(a) [4 points] Sketch the impulse responses of all three systems.
(b) [1 point] For what frequency ω between 0 and π is the amplitude response $A_{1}(\omega)$ of the filter H_{1} zero?
(c) [1 point] For what frequency ω between 0 and π is the amplitude response $A_{2}(\omega)$ of the filter H_{2} zero?
(d) [1 point] For what frequency ω between 0 and π is the amplitude response $A_{3}(\omega)$ of the filter H_{3} zero?
(e) [2 points] Give two reasons why the filter H_{3} is a better moving-average filter than either H_{1} or H_{2}.
(f) [2 points] Which of these filters are causal? Which are stable?

