\qquad

Question:	1	2	3	4	Total
Points:	8	12	18	12	50
Score:					

Figure 1: The sequence $x[n]$ consists of $N=401$ samples, where the sampling interval is $T=2 \mathrm{~ms}$ and the time of first sample is zero. The amplitude spectrum has been normalized so that the amplitude at zero Hz is one.

Question 1 (8 points)
(a) [2 points] What is the Nyquist frequency, in Hz (cycles per second)?
(b) [2 points] Label the time axis, with units of seconds.
(c) [2 points] In the amplitude spectrum, the minimum frequency plotted is zero. The maximum frequency plotted is not the Nyquist frequency. Label the frequency axis, with units of Hz .
(d) [2 points] What attribute of the sequence $x[n]$ best explains the large peak in the amplitude spectrum at zero frequency?
 For the sequence $x[n]$ in Figure 1, assume that anything above 50 Hz is noise, and consider the task of attenuating this high-frequency noise with a frequencydomain filter. The sequence $x[n]$ contains 401 samples, and you choose an FFT length $N=2000$ samples.
(a) [2 points] Explain why a smaller FFT length $N=500$ might not be adequate.
(b) [2 points] Explain why you cannot choose an FFT length $N=401$. (Hint: the number 401 is prime.)
(c) [2 points] After the FFT, the values $X[k]$ are generally complex, with real and imaginary parts. For which two indices k are the imaginary parts guaranteed to be zero?
(d) [2 points] What is the frequency sampling interval ΔF, in Hz ?
(e) [4 points] To attenuate the high-frequency noise above 50 Hz , for what range of indices k would you zero $X[k]$?

Refer to the sequence $x[n]$ and amplitude spectrum in Figure 1. Note the large peak in the amplitude spectrum at frequency $F=0 \mathrm{~Hz}$.
(a) [2 points] Specify the system response $H(z)$ for a causal system, with exactly one pole and one zero, that will zero the amplitude at $F=0 \mathrm{~Hz}$. Place the one pole for your system at $z=0$.
(b) [2 points] Sketch the impulse response $h[n]$ of your filter.
(c) $[2$ points $]$ Express the output $y[n]$ of your system in terms of the input $x[n]$.
(d) [4 points] Sketch the amplitude and phase responses $A(\omega)$ and $\phi(\omega)$ of your system for $-\pi<\omega<\pi$. (Units of ω are radians per sample.)
(e) [2 points] What is the amplitude response of your filter for frequency $F=$ 50 Hz ? (Express your answer in terms of a trigonometric function.)
(f) [2 points] Move the pole of your filter so that the amplitude response is nearly one for non-zero frequencies. Specify your modified system response $H(z)$.
(g) [2 points] Now include a scale factor so that the amplitude response is exactly one at the Nyquist frequency. Specify your modified system response $H(z)$.
(h) [2 points] Express the output $y[n]$ of your modified system in terms of the input $x[n]$.
 Consider two resampling systems that compute output sequences defined by $y_{1}[n]=x[2 n]$ and $y_{2}[n]=x[4 n]$ for the input sequence $x[n]$ displayed in Figure 1. (Recall that the sampling interval for $x[n]$ is $T=2 \mathrm{~ms}$.)
(a) [2 points] What are the sampling intervals T_{1} and T_{2} for the two outputs?
(b) [2 points] For the frequency range shown in Figure 1, sketch (roughly) the amplitude spectra $A_{1}(F)$ and $A_{2}(F)$ for the output sequences $y_{1}[n]$ and $y_{2}[n]$.
(c) [2 points] Is the sequence $y_{1}[n]$ aliased? Why or why not?
(d) [2 points] Is the sequence $y_{2}[n]$ aliased? Why or why not?
(e) [4 points] Write an analytical expression for a third resampling system with output $y_{3}[n]$ that has sampling interval $T_{3}=1 \mathrm{~ms}$, where the input is again the sequence $x[n]$ of Figure 1 .

