GPGN 404 Final Exam December 16, 2009

Name: _

Question:	1	2	3	4	Total
Points:	8	12	18	12	50
Score:					

Figure 1: The sequence x[n] consists of N = 401 samples, where the sampling interval is T = 2 ms and the time of first sample is zero. The amplitude spectrum has been normalized so that the amplitude at zero Hz is one.

- (a) [2 points] What is the Nyquist frequency, in Hz (cycles per second)?
- (b) [2 points] Label the time axis, with units of seconds.
- (c) [2 points] In the amplitude spectrum, the minimum frequency plotted is zero. *The maximum frequency plotted is not the Nyquist frequency*. Label the frequency axis, with units of Hz.
- (d) [2 points] What attribute of the sequence x[n] best explains the large peak in the amplitude spectrum at zero frequency?

- - (a) [2 points] Explain why a smaller FFT length N = 500 might not be adequate.
 - (b) [2 points] Explain why you *cannot* choose an FFT length N = 401. (Hint: the number 401 is prime.)
 - (c) [2 points] After the FFT, the values X[k] are generally complex, with real and imaginary parts. For which two indices k are the imaginary parts guaranteed to be zero?
 - (d) [2 points] What is the frequency sampling interval ΔF , in Hz?
 - (e) [4 points] To attenuate the high-frequency noise above 50 Hz, for what range of indices k would you zero X[k]?

(a) [2 points] Specify the system response H(z) for a causal system, with exactly one pole and one zero, that will zero the amplitude at F = 0 Hz. Place the one pole for your system at z = 0.

(b) [2 points] Sketch the impulse response h[n] of your filter.

(c) [2 points] Express the output y[n] of your system in terms of the input x[n].

(d) [4 points] Sketch the amplitude and phase responses $A(\omega)$ and $\phi(\omega)$ of your system for $-\pi < \omega < \pi$. (Units of ω are radians per sample.)

- (e) [2 points] What is the amplitude response of your filter for frequency F = 50 Hz? (Express your answer in terms of a trigonometric function.)
- (f) [2 points] Move the pole of your filter so that the amplitude response is nearly one for non-zero frequencies. Specify your modified system response H(z).

(g) [2 points] Now include a scale factor so that the amplitude response is exactly one at the Nyquist frequency. Specify your modified system response H(z).

(h) [2 points] Express the output y[n] of your modified system in terms of the input x[n].

- - (a) [2 points] What are the sampling intervals T_1 and T_2 for the two outputs?
 - (b) [2 points] For the frequency range shown in Figure 1, sketch (roughly) the amplitude spectra $A_1(F)$ and $A_2(F)$ for the output sequences $y_1[n]$ and $y_2[n]$.

- (c) [2 points] Is the sequence $y_1[n]$ aliased? Why or why not?
- (d) [2 points] Is the sequence $y_2[n]$ aliased? Why or why not?

(e) [4 points] Write an analytical expression for a third resampling system with output $y_3[n]$ that has sampling interval $T_3 = 1$ ms, where the input is again the sequence x[n] of Figure 1.