GPGN 404 Final Exam December 16, 2010

Question:	1	2	3	4	Total
Points:	8	10	22	10	50
Score:					

Figure 1: The sequence x[n] consists of N = 201 samples, where the sampling interval is T = 1 ms and the time of first sample is zero.

- (a) [2 points] What is the Nyquist frequency, in Hz (cycles per second)?
- (b) [2 points] Label the time axis, with units of seconds.
- (c) [2 points] In the amplitude spectrum, the minimum frequency plotted is zero. *The maximum frequency plotted is not the Nyquist frequency.* Label the frequency axis, with units of Hz.
- (d) [2 points] The sequence x[n] is contaminated with high-frequency noise with relatively low amplitude. At what frequency (in Hz) is this noise apparent in the amplitude spectrum?

- (a) [2 points] $201 = 3 \times 67$. Explain why you would not choose an FFT length N = 201.
- (b) [2 points] $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$. Explain why an FFT length N = 216 might be too small.
- (c) [2 points] After the FFT, the values X[k] are generally complex, with real and imaginary parts. For which two indices k are the imaginary parts guaranteed to be zero?
- (d) [2 points] What is the frequency sampling interval ΔF , in Hz?
- (e) [2 points] Determine the index k_0 of the sample in X[k] that contains most of the noise.

- - (a) [4 points] Sketch the locations of the poles and zeros for your filter.

(b) [4 points] Sketch the amplitude and phase responses $A(\omega)$ and $\phi(\omega)$ of your system for $-\pi < \omega < \pi$. (Units of ω are radians per sample.)

(c) [4 points] Specify the system response H(z) of your filter. Include a scale factor to ensure that the zero-frequency (DC) response is one. Define all coefficients $(b_0, b_1, ...)$ in H(z), but assume that a computer program will be used to compute their numerical values.

- (d) [2 points] Write a linear constant-coefficient difference equation for the output y[n] of your system in terms of the input x[n].
- (e) [2 points] Now suppose that you apply your notch filter in the opposite direction so that the system is *anti-causal*. Again express the output y[n] in terms of the input x[n].

- (f) [2 points] Specify the system response H(z) of the anti-causal filter.
- (g) [2 points] Sketch the amplitude and phase responses $A(\omega)$ and $\phi(\omega)$ of the anti-causal filter, for $-\pi < \omega < \pi$.

(h) [2 points] Let $y_1[n]$ denote the output of the causal system and $y_2[n]$ the output of the anti-causal system. We can apply both filters and average the two outputs to obtain the composite output $y[n] = (y_1[n] + y_2[n])/2$. Sketch the amplitude and phase responses $A(\omega)$ and $\phi(\omega)$ of the composite system, for $-\pi < \omega < \pi$.

- (a) [4 points] Specify a resampling system for output $y_1[n]$ with sampling interval 2 ms. Express the output $y_1[n]$ in terms of the input x[n].
- (b) [2 points] At what frequency less than 250 Hz will aliased high-frequency noise be apparent in the output $y_1[n]$.
- (c) [4 points] Specify a resampling system for output $y_2[n]$ with sampling interval 0.1 ms. Express the output $y_2[n]$ in terms of the input x[n].