GPGN 404

1st Midterm Exam

September 29, 2006
Name:

Question:	1	2	3	4	5	Total
Points:	5	5	4	18	18	50
Score:						

Question 1
. (5 points)
Let $h[n]=\delta[n+1]-2 \delta[n]+\delta[n-1]$, where $\delta[n]$ denotes the unit-impulse sequence.
Let $x[n]=u[n]$, where $u[n]$ denotes the unit-step sequence. Sketch the sequences
(a) $h[n]$, (b) $x[n]$, and (c) $y[n]=h[n] * x[n]$, where $*$ denotes convolution. (Label axes.)

Question 2 (5 points) Someone wants you to pay $\$ 10,000$ for their "black-box" digital system, which takes an input sequence $x[n]$ and produces an output sequence $y[n]$. They will not show you the computer program that implements their system, but they assure you that it is really great.
Being a clever Mines student, you feed a unit-impulse to this system and record the impulse response $h[n]$. Can you now implement the system yourself? In other words, can you compute the output $y[n]$ of this system for any input $x[n]$? If so, how would you do it? If not, why not?

Question 3
(4 points)
Given the convolution sum $y[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]$, and using the definition of the discrete-time Fourier transform, prove the convolution theorem; i.e., that $Y(\omega)=H(\omega) X(\omega)$.
 Consider the digital system defined by $y[n]=\frac{1}{3}(x[n+1]+x[n]+x[n-1])$.
(a) [3 points] Is this system linear? Time-invariant? Causal?
(b) [3 points] Sketch the impulse response $h[n]$ of this system. (Label axes.)
(c) [4 points] What is the frequency response $H(\omega)$ of this system?
(d) [4 points] Using the frequency response $H(\omega)$, show that the output $y[n]$ of this system for input $x[n]=\cos (\pi n)$ is $y[n]=c \times \cos (\pi n)$. What is the constant c ?
(e) [4 points] Assume a bounded input sequence $x[n]$ such that $|x[n]|<1$ for all n. For such an input sequence, how is the output sequence $y[n]$ bounded?

Consider a causal system described by the constant-coefficient difference equation $y[n]+\frac{1}{2} y[n-1]=2 x[n-1]$.
(a) [2 points] Is this system linear? Time-invariant?
(b) [4 points] Sketch the impulse response $h[n]$ for this system. (Label axes.)
(c) [4 points] What is the frequency response $H(\omega)$ of this system?
(d) [4 points] Assume a bounded input sequence $x[n]$ such that $|x[n]|<1$ for all n. For such an input sequence, how is the output sequence $y[n]$ bounded?
(e) [4 points] Write computer code to compute $y[n]$ for $n=0,1,2, \ldots, N-1$, given input $x[n]$ for $n=0,1,2, \ldots, N-1$.

