GPGN 404 1st Midterm Exam September 29, 2006

Name: _____

Question:	1	2	3	4	5	Total
Points:	5	5	4	18	18	50
Score:						

Being a clever Mines student, you feed a unit-impulse to this system and record the impulse response h[n]. Can you now implement the system yourself? In other words, can you compute the output y[n] of this system for any input x[n]?

If so, how would you do it? If not, why not?

- (b) [3 points] Sketch the impulse response h[n] of this system. (Label axes.)
- (c) [4 points] What is the frequency response $H(\omega)$ of this system?

- (d) [4 points] Using the frequency response $H(\omega)$, show that the output y[n] of this system for input $x[n] = cos(\pi n)$ is $y[n] = c \times cos(\pi n)$. What is the constant c?
- (e) [4 points] Assume a bounded input sequence x[n] such that |x[n]| < 1 for all n. For such an input sequence, how is the output sequence y[n] bounded?

- - (a) [2 points] Is this system linear? Time-invariant?
 - (b) [4 points] Sketch the impulse response h[n] for this system. (Label axes.)
 - (c) [4 points] What is the frequency response $H(\omega)$ of this system?

- (d) [4 points] Assume a bounded input sequence x[n] such that |x[n]| < 1 for all n. For such an input sequence, how is the output sequence y[n] bounded?
- (e) [4 points] Write computer code to compute y[n] for n = 0, 1, 2, ..., N 1, given input x[n] for n = 0, 1, 2, ..., N 1.