GPGN 404

1st Midterm Exam

October 2, 2009
Name:

Question:	1	2	3	4	5	6	Total
Points:	8	5	5	6	8	18	50
Score:							

Question 1 .. (8 points)
Consider the sequence $x[n]=\sin (2 \pi f n)$.
(a) [4 points] If $x[n]$ is periodic with period $N=20$ samples, what is the frequency f (in cycles per sample)?
(b) [2 points] Specify a second frequency f that yields the same sequence $x[n]$.
(c) [2 points] Specify a frequency f for which the sequence $x[n]$ is not periodic.

Question 2

(5 points)
Let $h[n]=2 \delta[n+1]-\delta[n]-\delta[n-1]$, where $\delta[n]$ denotes the unit-impulse sequence.
Let $x[n]=u[n]-u[n-3]$, where $u[n]$ denotes the unit-step sequence. Sketch the sequences (a) $h[n]$, (b) $x[n]$, and (c) $y[n]=h[n] * x[n]$, where $*$ denotes convolution. (Label axes.)

Question 3

Given only the impulse response $h[n]$ of an LTI system, how can you
(a) $[3$ points $]$ compute the output $y[n]$ for any input $x[n]$?
(b) [2 points] determine whether the system is stable?

Given that the discrete-time Fourier transform (DTFT) of $x[n]$ is $X(\omega)$, prove that
(a) [3 points] the DTFT of $x[n+3]$ is $X(\omega) e^{j \omega 3}$.
(b) [3 points] the DTFT of $x[-n]$ is $X(-\omega)$.

Question 5
(a) [4 points] Describe in words (not a computer program) a non-linear system $y[n]=T\{x[n]\}$ that removes isolated noise spikes from any sequence $x[n]$.
(b) [4 points] For inputs $x_{1}[n]=\delta[n], x_{2}[n]=u[n-1]$, and $x[n]=x_{1}[n]+x_{2}[n]$, sketch the corresponding outputs $y_{1}[n], y_{2}[n]$, and $y[n]$ for your system, and thereby prove that your system is non-linear.

Consider a stable system described by the constant-coefficient difference equation $y[n]-\frac{1}{4} y[n-1]=2 x[n-2]$.
(a) [3 points] Is this system linear? Time-invariant? Causal?
(b) [3 points] Sketch the impulse response $h[n]$ for this system. (Label axes.)
(c) [3 points] What is the frequency response $H(\omega)$ of this system?
(d) [3 points] How would you modify the scale factor 2 for $x[n-2]$ in this system so that the DC response $H(0)=1$.
(e) [3 points] Assume a bounded input sequence $x[n]$ such that $|x[n]|<1$ for all n. For such an input sequence, and for the original unmodified system above, what is the bound on $|y[n]|$ for the output sequence $y[n]$?
(f) [3 points] Write computer code to implement the original unmodified system. That is, write code to compute $y[n]$ for $n=0,1,2, \ldots, N-1$, given input $x[n]$ for $n=0,1,2, \ldots, N-1$.

