GPGN 404 1st Midterm Exam October 1, 2010

Name: _____

Question:	1	2	3	4	Total
Points:	10	10	15	15	50
Score:					

(a) e^{jn}

(b) $e^{j\pi n}$

(c) $n e^{j\pi n}$

(d) $\sin(\pi n/19)$

(e) $\sin(3\pi n/19)$

- (a) y[n] = x[n] 3
- (b) y[n] = x[n-3]
- (c) y[n] = x[3n]
- (d) y[n] = 3x[n]
- (e) y[n] = n x[n]

 $h[n] = \delta[n-1] + 2\delta[n] + \delta[n+1].$

- (a) Sketch the impulse response h[n] for this system.
- (b) Express the output y[n] of this system in terms of the input x[n].
- (c) For the input x[n] = u[n] (the unit-step sequence), sketch the output y[n].
- (d) What is the real-valued (no complex values) frequency response $H(\omega)$ of this system?
- (e) Is this system stable? If so, express the bound B_y on the output in terms of the bound B_x on the input. If not, why not?
- (f) How could you modify this system so that the DC (zero-frequency) response H(0) = 1, while preserving the shape of its impulse response h[n]?

$$H(\omega) = 2\frac{1 - e^{-j\omega}}{1 + e^{-j\omega}}.$$

- (a) Write simple expressions for $H(-\frac{\pi}{2})$, H(0), and $H(\frac{\pi}{2})$.
- (b) For the input $x[n] = \cos(\frac{\pi}{2}n)$, what is the output y[n]? Your answer should be a real-valued sequence (one with no complex values).

- (c) Write the linear constant-coefficient difference equation that represents this system.
- (d) Sketch the impulse response h[n] for this system.
- (e) Is this system stable? If so, express the bound B_y on the output in terms of the bound B_x on the input. If not, why not?
- (f) Write a computer program fragment that computes the output sequence y[n] from an input sequence x[n] for n = 0, 1, ..., nt-1.