GPGN 404 2nd Midterm Exam November 10, 2006

Question:	1	2	3	4	5	Total
Points:	2	3	18	14	13	50
Score:						

- (b) [3 points] Sketch the locations of the poles and zeros of H(z) in the complex z-plane.
- (c) [2 points] What is the region of convergence (ROC) for H(z)?
- (d) [2 points] Is this system causal? Stable? Why or why not?
- (e) [2 points] What is the frequency response $H(\omega)$ of this filter?
- (f) [3 points] Sketch the amplitude response $A(\omega)$ for $-\pi <= \omega <= \pi$. (Label axes.)
- (g) [2 points] Sketch the phase response $\phi(\omega)$ for $-\pi <= \omega <= \pi$. (Label axes.)

(h) [2 points] When applied to a digital signal with sampling interval T = 0.5 s, what frequency (in Hz) is most attenuated by this filter?

- (a) [3 points] Sketch the locations of the poles and zeros of H(z) in the complex z-plane.
- (b) [2 points] What is the region of convergence for H(z)?
- (c) [2 points] Is this system stable? Why or why not?
- (d) [3 points] Sketch the amplitude response $A(\omega)$ for $-\pi <= \omega <= \pi$. (Label axes.)
- (e) [2 points] Sketch the phase response $\phi(\omega)$ for $-\pi <= \omega <= \pi$. (Label axes.)

(f) [2 points] To implement this filter, what difference equation would you solve?

- - (a) [2 points] For the specified sampling interval T, what is the Nyquist frequency (in Hz)?
 - (b) [2 points] What is an upper bound for the maximum frequency F_m (in Hz)?
 - (c) [2 points] If $y_c(t) \equiv x_c(2t)$, how would you compute the corresponding sequence $y[n] = y_c(nT)$ from x[n]? (Express your answer without a sinc function.)
 - (d) [2 points] For the specified sampling interval T, what maximum frequency F_m for $x_c(t)$ will ensure that y[n] is not aliased?
 - (e) [3 points] If $z_c(t) \equiv x_c(t T/3)$, how would you compute the corresponding sequence $z[n] = z_c(nT)$ from x[n]? (Express your answer with a sinc function.)
 - (f) [2 points] For the specified sampling interval T, what maximum frequency F_m for $x_c(t)$ will ensure that z[n] is not aliased?