Name: \qquad

Question:	1	2	3	Total
Points:	22	15	18	55
Score:				

Question 1
Consider a continuous signal $x_{c}(t)$ with the following amplitude spectrum:

The spikes in the spectrum at $\pm 60 \mathrm{~Hz}$ are caused by power line noise. Now assume that this signal is sampled uniformly with interval $T=0.01 \mathrm{~s}$ to obtain a sequence $x[n]$.
(a) [2 points] What is the sampling frequency F_{S}, in Hz ?
(b) [2 points] What is the Nyquist frequency F_{N}, in Hz ?
(c) [4 points] Sampling in time causes replication in frequency. Sketch the amplitude spectrum implied by sampling. (Label any frequencies that are important in your sketch.)
(d) [2 points] Consider frequencies F only in the interval $|F|<F_{N}$. After sampling, the noise appears to be at what frequencies (in Hz)?
(e) [2 points] Convert the noise frequencies F, in Hz , to frequencies f in cycles per sample.
(f) [4 points] Determine and sketch the locations of two poles and two zeros for a simple digital filter that would eliminate the noise, while having little effect on other frequencies in the signal.
(g) [2 points] Write a difference equation with real coefficients for your two-pole, two-zero filter that relates input $x[n]$ to output $y[n]$.
(h) [4 points] Given the noise-free sequence $y[n]$, how would you best implement the transformation $z_{c}(t)=y_{c}(\sqrt{t})$ in a digital system? That is, write an expression for a sequence $z[n] \equiv z_{c}(n T)$ in terms of the sequence $y[n]$.
 Find z-transforms $X(z)$, including the regions of convergence, of the following sequences:
(a) [3 points] $x[n]=\delta[n-3]$
(b) [3 points] $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$
(c) [3 points] $x[n]=\left(\frac{1}{3}\right)^{n+2} u[n+2]$
(d) [3 points] $x[n]=\left(\frac{1}{3}\right)^{n} u[n+2]$
(e) [3 points] $x[n]=3^{n} u[-n-1]+\left(\frac{1}{3}\right)^{n} u[n]$

Question 3 (18 points)
Consider a system with z-transform

$$
H(z)=1-z^{-3}, \quad|z|>0
$$

(a) [2 points] How many zeros are in this system? How many poles?
(b) [4 points] Plot the poles and zeros in a sketch of the complex z-plane.
(c) [3 points] Sketch the amplitude spectrum of this system for frequencies $-\pi<\omega<\pi$.
(d) [2 points] Write a difference equation for this system.
(e) [2 points] Is this system stable? Why or why not?
(f) [2 points] Sketch the impulse response of this system.
(g) [3 points] Sketch the output sequence $y[n]$ of this system for the input sequence $x[n]=u[n]$. (In other words, sketch the step response of this system.)

