GPGN 404

2nd Midterm Exam

November 20, 2009
Name:

Question:	1	2	3	4	Total
Points:	18	18	16	3	55
Score:					

Find z-transforms $X(z)$, including the regions of convergence, of the following sequences:
(a) [3 points] $x[n]=\delta[n-2]$
(b) $[3$ points $] x[n]=2 \delta[n+2]-3 \delta[n-2]$
(c) [3 points] $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$
(d) $[3$ points $] x[n]=\left(\frac{1}{4}\right)^{n+1} u[n+1]$
(e) [3 points] $x[n]=\left(\frac{1}{4}\right)^{n} u[n+1]$
(f) $[3$ points $] x[n]=4^{n} u[-n-1]$

Consider a system with z-transform

$$
H(z)=1+z^{-2}, \quad|z|>0 .
$$

(a) [2 points] How many zeros are in this system? How many poles?
(b) [4 points] Plot the poles and zeros in a sketch of the complex z-plane.
(c) [3 points] Sketch the amplitude spectrum of this system for frequencies $-\pi<\omega<\pi$.
(d) [2 points] Write a difference equation for this system.
(e) [2 points] Is this system stable? Why or why not?
(f) [2 points] Sketch the impulse response of this system.
(g) [3 points] If applied to a sequence $x[n]=x_{c}(n T)$ with sampling interval $T=4 \mathrm{~ms}$, what frequency F (in Hz) is most attenuated by this filter?
 Assume that you are given a sampled sequence $x[n]=x_{c}(n T)$, where the sampling interval $T=4 \mathrm{~ms}$.
(a) [2 points] What is the sampling frequency F_{s} ?
(b) [2 points] What is the Nyquist frequency F_{n} ?
(c) [4 points] Sketch the amplitude spectrum $A(F)$ of a non-zero continuous (not yet sampled) signal $x_{c}(t)$ for which the corresponding sampled sequence $x[n]$ is not aliased. In your sketch, (1) label the frequency axis F with units of Hz , (2) include both negative and positive frequencies, and (3) indicate both the sampling frequency F_{s} and Nyquist frequency F_{n}.
(d) [2 points] Make a similar sketch for which the sequence $x[n]$ is aliased.
(e) [2 points] Assume that the sequence $x[n]$ is not aliased, and sketch the amplitude spectrum $A(\omega)$ of this sequence for frequencies $-2 \pi<\omega<2 \pi$. In this sketch, the units of frequency ω are radians/sample.
(f) [4 points] Assume that the sequence $x[n]=x_{c}(n T)$ is not aliased, and write a computer program fragment with two loops (one nested inside the other) that will compute a new sequence $y[n]=x_{c}\left(t_{0}+n T\right)$, where $t_{0}=1 \mathrm{~ms}$. private static float sinc(float x) \{ // assume this method exists \}
int nt = sx.getCount();
float $d t=(f l o a t) s x$. getDelta();
float t0 = 0.001f;
float pi = (float) Math.PI;
// TODO: good (but slow) implementation of sinc interpolation

After his most recent haircut, how much did Dr. Hale tip his barber?

