GPGN 404 2nd Midterm Exam November 19, 2010

Name: _____

Question:	1	2	3	4	Total
Points:	18	17	14	6	55
Score:					

Find system responses H(z), including regions of convergence, for linear timeinvariant systems with the following impulse responses:

(a)
$$h_1[n] = \delta[n+3]$$

(b)
$$h_2[n] = \delta[n+3] - \delta[n-3]$$

(c)
$$h_3[n] = u[n+3] - u[n-3]$$

(d)
$$h_4[n] = \left(\frac{1}{2}\right)^n u[n]$$

(e)
$$h_5[n] = \left(\frac{1}{2}\right)^{-n} u[-n]$$

(f)
$$h_6[n] = \left(\frac{1}{2}\right)^{|n|} (= h_4[n] + h_5[n] - \delta[n])$$

$$H(z) = z - z^{-1}.$$

(a) Plot the poles and zeros in a sketch of the complex z-plane.

(b) Sketch the amplitude response $A(\omega)$ and phase response $\phi(\omega)$ of this system for frequencies $-\pi < \omega < \pi$.

- (c) Write a difference equation for this system.
- (d) Sketch the impulse response of this system.
- (e) Is this system stable? Why or why not?
- (f) If applied to a sequence x[n] with sampling interval T = 4 ms, what frequencies F (in Hz) are most attenuated by this filter?

- (a) What is the sampling frequency F_s ?
- (b) What is the Nyquist frequency F_n ?
- (c) Assume that, before sampling, the continuous signal $x_c(t)$ was contaminated with noise at 75 Hz. Sketch one possible amplitude spectrum A(F) of the continuous signal $x_c(t)$ In your sketch, (1) label the frequency F axis with units of Hz, (2) include both negative and positive frequencies, (3) indicate both the sampling frequency F_s and Nyquist frequency F_n , and (4) make the noise apparent at ± 75 Hz.

(d) Assume that sampling was performed such that $x[n] = x_c(nT)$. Sketch the corresponding amplitude spectrum $A(\omega)$ of the sequence x[n] for frequencies $-2\pi < \omega < 2\pi$. (Units of frequency ω are radians/sample.) Your sketch should highlight the replication caused by sampling, and indicate all frequencies at which noise is apparent.

(e) Can you recover the continuous signal $x_c(t)$ from the sampled sequence x[n]? If so, how? If not, why not? (a) Delay the input by 8 ms.

(b) Delay the input by 10 ms.