GPGN 404 2nd Midterm Exam November 18, 2011

e
\mathbf{e}

Question:	1	2	3	4	5	Total
Points:	15	12	12	8	3	50
Score:						

(a) Sketch the poles and zeros of this system.

- (b) Sketch the impulse response $h_1[n]$ of this system.
- (c) Sketch the amplitude response $A_1(\omega)$ and phase response $\phi_1(\omega)$ of the system H_1 , for frequencies ω (in radians/sample) in the range $[-\pi, \pi]$.

- (d) If the time sampling interval is 1 ms, what frequency (in Hz) is most attenuated by this system?
- (e) Specify the response H(z) for a system that attenuates the same frequency, but with less attenuation (and less phase distortion) for other frequencies.

- - (a) Sketch the poles and zeros of the system H_2 .

- (b) What is the region of convergence for the system H_2 ? Is the system H_2 stable and/or causal? Explain.
- (c) Sketch the amplitude response $A_2(\omega)$ and phase response $\phi_2(\omega)$ of the system H_2 , for frequencies ω (in radians/sample) in the range $[-\pi, \pi]$.

(d) Assume that a sequence x[n] is input to both systems H_1 and H_2 to obtain corresponding output sequences $y_1[n]$ and $y_2[n]$. Show how to compute the output sequence $y_2[n]$ directly from only the output sequence $y_1[n]$.

- - (a) Sketch the poles and zeros of the system H_3 .

- (b) What is the region of convergence for the system H_3 ? Is the system H_3 stable and/or causal? Explain.
- (c) Sketch the amplitude response $A_3(\omega)$ and phase response $\phi_3(\omega)$ of the system H_3 , for frequencies ω (in radians/sample) in the range $[-\pi, \pi]$.

(d) Write a linear constant-coefficient difference equation that relates the output sequence y[n] of the system H_3 to the input sequence x[n].

- (a) To avoid aliasing, but without oversampling, how many times per day must you sample this signal? (In other words, what is your sampling frequency F_S , in samples/day?)
- (b) What is your Nyquist frequency F_N , in cycles/day?
- (c) What is your time sampling interval T, in hours?
- (d) If you chose a sampling interval T = 12 hours, at what frequency (in cycles/day) would the noise be apparent in your sampled signal?