GPGN 404 2nd Midterm Exam November 15, 2013

Name: _____

Question:	1	2	3	4	Total
Points:	8	12	15	15	50
Score:					

(a)
$$h_1[n] = u[n] - u[n - 16]$$

(b)
$$h_2[n] = h_1[n] * h_1[n]$$

(a) has a finite impulse response

(b) is unstable

- (c) is stable, with a left-sided (infinitely long) impulse response
- (d) is stable, not causal, and has a right-sided impulse response

Question 3			$\dots (15 \text{ points})$
Consider the LTI system	with system response H	$(z) = 1 - z^{-4}.$	

(a) Sketch locations of all poles and zeros in the complex z-plane.

- (b) Sketch the impulse response h[n] for this system. (Label axes.)
- (c) What is the frequency response $H(\omega)$ for this system?
- (d) Sketch the amplitude response $A(\omega)$ for $-\pi \leq \omega \leq \pi$. (Label axes.)

(e) Sketch the phase response $\phi(\omega)$ for $-\pi \leq \omega \leq \pi$. (Label axes.)

- - (a) Specify an upper bound on the maximum frequency contained in the analog signal s(t).
 - (b) Use sinc interpolation to express a new sequence $y[n] = s(\frac{n}{20})$ in terms of the given sequence x[n].

- (c) Might the new sequence y[n] be aliased? Why or why not?
- (d) Without using sinc interpolation, express a new sequence $z[n] = s(\frac{n}{5})$ in terms of the given sequence x[n].
- (e) Give an example of a signal s(t) for which the original sequence x[n] is not aliased, but for which the new sequence z[n] is aliased.