GPGN 404

2nd Midterm Exam

November 15, 2013
Name:

Question:	1	2	3	4	Total
Points:	8	12	15	15	50
Score:					

 Specify system responses $H(z)$ (including regions of convergence) for linear timeinvariant systems having the following impulse responses. (The symbol $*$ denotes convolution.)
(a) $h_{1}[n]=u[n]-u[n-16]$
(b) $h_{2}[n]=h_{1}[n] * h_{1}[n]$
 Specify the system response $H(z)$ (including the ROC) of any system that
(a) has a finite impulse response
(b) is unstable
(c) is stable, with a left-sided (infinitely long) impulse response
(d) is stable, not causal, and has a right-sided impulse response
 Consider the LTI system with system response $H(z)=1-z^{-4}$.
(a) Sketch locations of all poles and zeros in the complex z-plane.
(b) Sketch the impulse response $h[n]$ for this system. (Label axes.)
(c) What is the frequency response $H(\omega)$ for this system?
(d) Sketch the amplitude response $A(\omega)$ for $-\pi \leq \omega \leq \pi$. (Label axes.)
(e) Sketch the phase response $\phi(\omega)$ for $-\pi \leq \omega \leq \pi$. (Label axes.)
 Suppose you are given a sequence $x[n]$ that was obtained by sampling without aliasing an analog signal $s(t)$, with sampling interval $T=0.1 \mathrm{~s}$. Specifically, $x[n]=s(n T)=s\left(\frac{n}{10}\right)$.
(a) Specify an upper bound on the maximum frequency contained in the analog signal $s(t)$.
(b) Use sinc interpolation to express a new sequence $y[n]=s\left(\frac{n}{20}\right)$ in terms of the given sequence $x[n]$.
(c) Might the new sequence $y[n]$ be aliased? Why or why not?
(d) Without using sinc interpolation, express a new sequence $z[n]=s\left(\frac{n}{5}\right)$ in terms of the given sequence $x[n]$.
(e) Give an example of a signal $s(t)$ for which the original sequence $x[n]$ is not aliased, but for which the new sequence $z[n]$ is aliased.

