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Elastic FWI for orthorhombic media with lithologic constraints applied via

machine learning
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ABSTRACT

Full-waveform inversion (FWI) of 3D wide-azimuth data for
elastic orthorhombic media suffers from parameter trade-offs
which cannot be overcome without constraining the model-updat-
ing procedure. We present an FWI methodology that incorporates
geologic constraints to reduce the inversion nonlinearity and in-
crease the resolution of parameter estimation for orthorhombic
models. These constraints are obtained from well logs, which
can provide rock-physics relationships for different geologic fa-
cies. Because the locations of the available well logs are usually
sparse, a supervised machine-learning (ML) algorithm (Support
Vector Machine) is employed to account for lateral heterogeneity
in building the lithologic constraints. The advantages of the fa-
cies-based FWI are demonstrated on the modified SEG-EAGE

3D overthrust model, which is made orthorhombic with the sym-
metry planes that coincide with the Cartesian coordinate planes.
We employ a velocity-based parameterization, whose suitability
for FWI was studied using the radiation-pattern analysis. Appli-
cation of the facies-based constraints substantially increases the
resolution of the P- and S-wave vertical velocities (Vpg, Vg, and
Vs1) and, therefore, of the depth scale of the model. Improve-
ments are also observed for the P-wave horizontal and nor-
mal-moveout velocities (Vpy, Vpa, Vimo1» and Vin,0) and the
S-wave horizontal velocity Vg,. However, the velocity V3 that
depends on Tsvankin’s parameter 5) defined in the horizontal
plane is not well recovered from the surface data. On the whole,
the developed algorithm achieves a much higher spatial resolution
compared to unconstrained FWI, even in the absence of recorded
frequencies below 2 Hz.

INTRODUCTION

Elastic full-waveform inversion (Tarantola, 1984) is a promising
tool for building high-resolution velocity models and improving the
quality of the output from seismic imaging workflows. There has been
considerable progress in extending FWI to anisotropic media but the
majority of existing studies are limited to transversely isotropic (TI)
models with a vertical or tilted symmetry axis (e.g., Kamath and
Tsvankin, 2016; Rusmanugroho et al., 2017; Singh et al., 2019,
2020a). Transverse isotropy adequately describes the elastic properties
of unfractured shale formations and finely layered sequences in typical
sedimentary basins. However, the presence of natural fracture sets and/
or nonhydrostatic stresses reduces the medium symmetry to at least
orthorhombic (Bakulin et al., 2000; Tsvankin and Grechka, 2011).

There is ample evidence suggesting that orthorhombic symmetry
represents the most common type of azimuthal anisotropy in the

subsurface (Tsvankin and Grechka, 2011; Tsvankin, 2012; Xie
et al., 2017; Maitra et al., 2018; Masmoudi and Alkhalifah,
2018). The large number of independent parameters needed to de-
scribe orthorhombic media leads to serious complications in FWIL.
In particular, parameter trade-offs may cause a substantial deterio-
ration of the inversion results. Therefore, a careful choice of param-
eterization (e.g., Alkhalifah and Plessix, 2014) is essential in
applying FWI to orthorhombic media.

Tsvankin (1997) introduces a widely used notation for ortho-
rhombic models that includes two vertical velocities and seven
dimensionless Thomsen-style (Thomsen, 1986) anisotropy coeffi-
cients. This notation, based on a limited analogy between the sym-
metry planes of orthorhombic and TI media, provides a concise
description of seismic signatures and facilitates application of
velocity-analysis and inversion algorithms to orthorhombic models
(Tsvankin, 1997; 2012).
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Analyzing radiation (scattering) patterns of the medium param-
eters can yield valuable insights into potential trade-offs and the
types of data required for reliable parameter estimation. Oh and Al-
khalifah (2016, 2019) study the radiation patterns for different pa-
rameterizations of elastic orthorhombic media and conclude that the
so-called “deviation parameters” (the differences between the
anisotropy coefficients defined in the vertical symmetry planes)
can help mitigate the trade-offs in FWI. However, the difference
between two typically small anisotropy coefficients may not be a
stable quantity in the presence of realistic parameter errors.

Here, we describe the orthorhombic model in terms of the P- and
S-wave velocities along the symmetry directions and the P-wave
normal-moveout (NMO) velocities. This parameterization inherits
the advantages of Tsvankin’s notation and represents an extension
of the notations proposed by Wang and Tsvankin (2018) for acous-
tic orthorhombic media and by Kamath and Tsvankin (2016) for
elastic VTI media. Singh and Tsvankin (2020) study the radiation
patterns of these parameters for an orthorhombic perturbation em-
bedded in a VTI background. The results of their analysis are help-
ful in properly implementing elastic FWI for orthorhombic media,
as discussed below.

The velocity-based parameterization is also convenient for FWI
because all parameters have the same units and similar magnitudes,
which is also true for the inversion gradients. Additionally, the
velocities often have a similar spatial distribution, so a single mi-
grated section can be used to implement image-guided interpolation
(see below).

Still, even an optimal parameterization is generally insufficient to
eliminate parameter trade-offs in FWI for anisotropic media. There-
fore, it is essential to impose constraints on model updating using,
for example, prior lithologic information about the subsurface
(Zhang et al., 2018; Singh et al., 2018). Zhang and Alkhalifah
(2019, 2020) apply a deep neural network (DNN) to constrain
the inversion workflow by generating the spatial distribution of
prior information represented by geologic facies. They build the in-
itial model by training the network on the parameters obtained by
unconstrained FWI with the goal of identifying the relationships
between these parameters and borehole data. Singh et al. (2018,
2020b) use image-guided interpolation for TI media to build litho-
logic constraints that account for lateral heterogeneity. They show
that these facies-based constraints can reduce the inversion nonli-
nearity and increase parameter resolution even for hydrophone
(pressure) data. Their inversion algorithm also produces a facies
model that could be highly beneficial for reservoir characterization.
Here, we extend their approach to orthorhombic media and enhance
it by incorporating machine learning.

Initial models for FWI are often obtained from reflection tomog-
raphy or other post-migration or data-domain velocity-analysis
methods. Most anisotropic velocity-inversion techniques are de-
signed for TI media with a vertical or tilted symmetry axis (Grechka
and Tsvankin, 1998; Li and Yuan, 1999; Tsvankin and Grechka,
2011; Tsvankin, 2012; Wang and Tsvankin, 2013a, 2013b).
Long-wavelength orthorhombic models can be built by applying
nonhyperbolic moveout inversion or the inversion of NMO ellipses,
also called “stacking-velocity tomography” (Grechka et al., 2005;
Vasconcelos and Tsvankin, 2006; Tsvankin and Grechka, 2011; Li
et al., 2012; Liu and Tsvankin, 2019). Here, we construct the initial
model by performing 2D FWI in the vertical symmetry planes of
orthorhombic media.

We begin by describing the FWI methodology for 3D wide-azi-
muth data from elastic orthorhombic media. Then a modified ortho-
rhombic 3D overthrust model is used to carry out unconstrained
inversion of multicomponent surface data. To incorporate lithologic
information into FWI, we introduce an efficient technique designed
to build facies-based constraints from borehole data using machine
learning. Application to the overthrust model demonstrates the ben-
efits of the lithologic constraints in mitigating the inversion nonli-
nearity and increasing the resolution of most estimated parameters.
The machine-learning algorithm incorporated into the FWI frame-
work also generates a high-resolution facies model suitable for res-
ervoir characterization.

ELASTIC FWI FOR ORTHORHOMBIC MEDIA

We employ the /2>-norm objective function to minimize the misfit
between the observed (d,ys) and simulated (dy;,,) displacement:

ng

E<m) = Z ”dobs - dsim(m)H +ﬂ||Wm(minv - mprior)| 2
s=1

ey

’

where m is the vector of model parameters, n, is the number of
sources, My, and myy,, are the inverted and prior model, respec-
tively, and W, is a weighting matrix. The second term in equation 1
is employed to regularize the objective function, and the scaling
coefficient § can be adjusted depending on the reliability of the prior
information (Singh et al., 2020b). The vector d generally includes
all three displacement components, and the differences between the
observed and simulated data are computed for each component sep-
arately.

The large number of independent parameters of orthorhombic
media makes the inversion highly nonlinear, often with multiple
local minima of the objective function. For such multimodal objec-
tive functions, it is essential that the initial model lie in the imme-
diate vicinity (basin of convergence) of the global minimum. Note
that the nonuniqueness of the inverse problem can also be caused by
the flatness of the objective function near its global minimum.

We simulate the displacement u for heterogeneous orthorhombic
media using the elastic wave equation:

Pu; 3} duy,
P = 9 Cijki

2 ox. }-FF;» @)

ox;

where p is the density, F is the body force per unit volume, and
ciju(ij k,1=1,2,3) are the stiffness coefficients; summation
over repeated indices is implied.

Notation and inversion gradients

We assume that the three orthogonal symmetry planes of ortho-
rhombic media coincide with the Cartesian coordinate planes. Then
the model is described by nine generally independent stiffness co-
efficients and density (Figure 1). Tsvankin (1997, 2012) uses the
analogous form of the Christoffel equation in the symmetry planes
of orthorhombic and TI media to replace the stiffnesses with the
following parameters:
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Vpo: the P-wave vertical velocity;

Vso: the vertical velocity of the S-wave polarized in the
x;-direction;

e, 60 and y(): the VTI parameters in the [x,, x;]-plane (the
superscript indicates the axis perpendicular to the correspond-
ing plane);

€@, 52 and y?: the VTI parameters in the [x;, x3]-plane;

503): the VTI parameter in the [x,, x,]-plane (x, plays the role of the
symmetry axis).

This notation reduces the number of independent parameters
responsible for P-wave kinematics from nine to six (Vpy, e(!),
61, €?, 5@ and 63)) and has other important advantages
for processing and inversion of seismic data (Tsvankin, 1997,
2012).

Following Kamath and Tsvankin (2016) and Wang and Tsvankin
(2018), we parameterize the model in terms of the velocities listed
below that represent simple functions of Tsvankin’s anisotropy co-
efficients:

Ve = VeV 1+ 2¢, 3)
Viy = VpgV'1 4 2¢2), “)
Vamot = VeoV 1 + 250, )
Vamo2 = VeoV 1 +25@), (6)

Vimos = VeoV 1 + 283, (7

1+ 20
Vg1 = Vsot | ——75, 8
s1 S04/ 1 2,0 (®)
Vs = Vo / 1+ 271, )

where Vp;, Vpy, and Vp are the P-wave velocities in the x,-, x;-,
and x;-directions, respectively, V.1 and V., are the P-wave
NMO velocities from a horizontal reflector in the [x,, x3]-, and
[x, x3]-planes, respectively, V3 is a similarly defined parameter
that absorbs the influence of the coefficient 54), Vg, = \/cau/p is
the vertical velocity of the S-wave polarized in the x,-direction, and
Vo = y/ces/p is the horizontal velocity of the SH-waves in both
vertical symmetry planes. (Note that these SH-waves represent two
different modes, the fast split shear wave S; and the slow wave S,,
in the [x;, x3]- and [x,, x3]-planes.)

The gradient of the objective function is obtained by differenti-
ating equation 1:

aEaEIIln I rg,i,“‘] ' [done — dyon(m)]

+ ﬂ Wgwm (minv - mprior)' (10)

As in most FWI algorithms, the inversion gradient from equation 10
is computed by the adjoint-state method (e.g., Liu and Tromp, 2006;
Kamath and Tsvankin, 2016).

The relationships between the stiffness coefficients and the veloc-
ities defined in equations 3-9, as well as the exact expressions for
the inversion gradients (for # = 0) can be found in Appendix A. For
the numerical examples below, iterative parameter updating is car-
ried out with a multiscale approach using the nonlinear conjugate-
gradient method (e.g., Hager and Zhang, 2006).

The elastic wave equation (equation 2) is solved using a fourth-
order (in space) and second-order (in time) finite-difference algo-
rithm on a staggered grid with the convolutional perfectly matched
layers (CPML) boundary conditions on the model sides (except for
the top, which represents a free surface). To reduce the computa-
tional cost associated with handling large-scale elastic 3D models,
we apply the domain-decomposition method (Bohlen, 2002).

Synthetic example

We test the developed FWI algorithm on a modified SEG-EAGE
3D overthrust model, which is discretized on a 400 x 400 x 140
grid (Figure 2). To mitigate grid dispersion, the spatial grid spacing
dh has to satisfy the following criterion:

Vmin

nfmax

dh = . an

where Vi, is the minimum velocity in the model, £, is the maxi-
mum frequency of the source signal, and n = 8 for fourth-order
finite-different operators. For our model, V. ;, = 1.82 km/s
and f. ~ 19Hz. To completely eliminate dispersion, we set
dh =10, which corresponds to a physical domain of
4.0 km x 4.0 km X 1.4 km.

The anisotropy coefficients are obtained by scaling the P- and S-
wave velocity fields of the original isotropic model (herein referred
to as Vpy and V), so all parameters have a similar spatial structure.
The multicomponent data are recorded with a time increment of

X
1 5o symn;etry pllane
X, o X5 X,
X3 e';‘Q\'b‘\?,‘\ V4
+* "
N
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Figure 1. Orthorhombic model formed by parallel vertical fractures
embedded in a background VTI medium. One of the symmetry
planes is horizontal, and the other two are parallel and perpendicular
to the fractures (adapted from Tsvankin, 2012).
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0.8 ms at the bottom of the water layer (“sea floor”). The wavefield
is excited by 100 shots (point explosions) and recorded by 3600
receivers evenly distributed over a horizontal plane and placed
40 m and 240 m, respectively, beneath the surface. To reduce un-
desirable reflections from the sides of the model, we employ a 100-
m thick CPML boundary (except for the free surface on top). The
source signal is a Ricker wavelet with a central frequency of 10 Hz.

Parallelization of the modeling algorithm is based on domain de-
composition. The model is separated into subdomains, and the
wavefield is updated within each subdomain by the corresponding
processing element. We use a Message Passing Interface (2018 Intel
MPI) to assign subdomains to different processing elements, which
also provides a connection between these distributed domains
needed to exchange the values of the updated velocity and stress
fields. We use a total of 20 processing elements, so the model is
divided into 20 equal subdomains. All three displacement compo-
nents are inverted simultaneously.

Initial model building

An accurate initial model is essential for FWI, especially when
inverting for multiple medium parameters. As mentioned above, we
assume that the symmetry planes of the orthorhombic medium
coincide with the Cartesian coordinate planes, so the symmetry-
plane orientation (Figure 1) is fixed throughout the model. The azi-
muths of the vertical symmetry planes of a horizontally layered
orthorhombic medium can be estimated from the NMO ellipses
or azimuthally varying amplitude-variation-with-offset (AVO) gra-
dients of reflected waves (Grechka and Tsvankin, 1998; Vasconce-
los and Tsvankin, 2006; Wang and Tsvankin, 2009; Tsvankin and
Grechka, 2011). Here, we assume the orientation of the vertical
symmetry planes to be known and spatially invariant.

There is a limited equivalence (that does not include geometric
spreading) between the symmetry planes of orthorhombic media

and any plane of transversely isotropic (TI) models that contains
the symmetry axis (Tsvankin, 1997). This equivalence has been
used in nonhyperbolic moveout analysis to build initial orthorhom-
bic models by performing 2D VTI inversion in the vicinity of the
symmetry planes (Vasconcelos and Tsvankin, 2006; Tsvankin and
Grechka, 2011).

Likewise, here we apply 2D FWI for VTI media to the data in the
vertical symmetry planes to estimate the in-plane VTI parameters. It
should be noted that lateral heterogeneity and the difference be-
tween the geometric spreading in the symmetry planes of ortho-
rthombic and VTI media could cause errors in the inversion
results. Still, our approach produces a more accurate, higher-reso-
lution initial model for orthorhombic FWI than that based solely on
moveout inversion.

The 2D inversion, carried out in the vertical symmetry planes that
cross the center of the model, yields the initial values of the param-
eters (1), (1) and y(l) (for the [x,, x3]-plane) and e? 52 and y(z)
(for the [x;, x3]-plane). The parameters Vpy, Vg, and p are obtained
in both symmetry planes. The parameter 6 defined in the [x,, x,]-
plane can be estimated by inverting the P-wave nonhyperbolic
moveout or NMO ellipses from dipping reflectors (Tsvankin and
Grechka, 2011). Here, we assume that the initial distribution of
53 coincides with that of the parameter 52).

The initial models for the VTI inversion in the symmetry planes
(Figure 3) are obtained by applying 2D Gaussian smoothing of the
actual parameters. The standard deviation (SD) of the smoothing
kernel from the actual parameter distributions is set to 15. Similar
long-wavelength initial models could be produced by 2D reflection
tomography or moveout inversion (Vasconcelos and Tsvankin,
2006; Wang and Tsvankin, 2009, 2013a, 2013b). To build the initial
3D orthorhombic model, we extrapolate the values estimated by the
2D symmetry-plane inversion along an image of the inversion gra-
dient (Hale, 2010). This image provides the orientation of the layer
boundaries which are used to extrapolate the medium parameters. It

is also possible to use prestack migrated sections
generated using the energy-norm (Rocha et al.,

a) 6 b) 2017) or other imaging conditions for elastic me-
I s I'6 dia (Duan and Sava, 2015).

2 31 5 3 | L5 Because the model is laterally heterogeneous,

2 " 22 & out-of-planes events could degrade the 2D sym-

g 4N = -4 ? . .

1 E 19 E metry-plane inversion results. Therefore, Gaus-
~0 -3 ~0 -3 sian smoothing (SD = 20 m) is applied to the
E — - £ s estimated VTI parameters to suppress such arti-
& . 3 5 s p S tO suppress s
L zﬂl N 11'41 ’ ‘:‘L facts. The initial orthorhombic model is

2 2 .
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Figure 2. Parameters of an orthorhombic overthrust model: (a) the P-wave vertical
velocity (Vpg), (b) the P-wave normal-moveout velocity in the [x,, x3]-plane
(Vamo.1)s (c) the S-wave vertical velocity (Vg), and (d) the density (p). The cross-sec-
tions display the parameters in the coordinate (symmetry) planes at the center of the
model. The velocities not shown here have a spatial distribution similar to that of Vp,.

y (km)

0-2 Hz, which are seldom available in the field,
are removed by applying a bandpass Wiener fil-
ter to keep frequencies only between 2 and
19 Hz. As in most existing FWI algorithms,
the inversion nonlinearity is partially mitigated
using the multiscale approach (Bunks et al.,
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1995) with four frequency bands (2-5 Hz, 2-8 Hz, 2-13 Hz, and 2—
19 Hz). To suppress numerical artifacts, Gaussian-based smoothing
(SD = 40 m) is applied to the inversion gradients (Modrak and
Tromp, 2016).

To improve the convergence of the optimization method and
avoid local minima of the objective function, the amplitude decay
with depth due to geometric spreading and multiple reflections in
the overburden needs to be compensated for. Hence, we precondi-
tion the inversion gradients using an approximation for the diagonal
elements of the inverse of the Hessian matrix. The approximated
Hessian is obtained by the zero-lag correlation of the magnitude
of the forward wavefield with an approximate receiver Green’s
function (Plessix and Mulder, 2004). This procedure is imple-
mented before the determination of the descent direction in the con-
jugate-gradient method. Hence, the direction of the parameter

R593

updating always follows the negative slope of the smoothed
gradient.

The output of FWI without constraints (using # = 0 in equation 1)
is shown in Figures 4 and 5. As explained below, the results are in
general agreement with the study of the scattering (radiation) pat-
terns for orthorhombic media (Singh and Tsvankin, 2020).

The P-wave horizontal velocities Vp; and Vp, are well resolved
throughout the entire section, which is predicted by the radiation-
pattern analysis. Although the P-wave vertical velocity Vp, is ac-
curately estimated in the upper part of the section, the structural
complexity of the Vpy-field is not fully reconstructed at depth. De-
spite the relatively weak sensitivity of FWI to the NMO velocities
Vimo1 and V.., they are estimated with acceptable accuracy in
the upper part of the section (above 0.8 km) because the simulated
data include intensive pure P-wave reflections (Singh and Tsvankin,

a) r6 b) L 6 Figure 3. Initial parameters for the model in Fig-
3+ |_5 34 | ure 2: (a) VPO’ (b) Vnmo,l» (C) VSOa and (d) pP-
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Figure 4. Results of the unconstrained FWI: (a) Vp;, (b) Vp,, (©) Vg, (d) Vimo1s (€) Vimoz» and (£) Voo s-
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3.5 2020). As the velocity V.3 barely influences

34 -3 the objective function, it is the least resolved

2 2.5 . medium parameter, although it could be better
. 'f s T constrained by longer-offset data.

[~ Singh and Tsvankin (2020) show that a pertur-

0 — — ::)5 bation of the S-wave horizontal velocity Vg,

1- J. -o. scatters most of the energy close to the horizontal

0 2 2 4 plane, so Vg, can be constrained only in the shal-

x (km) y (km) low part of the section. In contrast, the perturba-

3 tions in the shear-wave vertical velocities (Vg

and Vg;) scatter energy towards the surface,

3 j 2.5 and FWI succeeds in reconstructing the high-res-

2 1 " olution fields of both parameters. The radiation

1- 28 patterns also suggest that there are trade-offs be-

0 1.5 ¢ tween Vg, Vg, and the P-wave NMO velocities

N e == = Vamo and V.. -. However, the scattering am-
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Figure 5. Results of the unconstrained FWI: (a) Vg, (b) Vg, (¢) Vs,, and (d) p.
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Figure 6. Depth slice of the velocity Vp; at z = 0.7 km. The loca-
tions of the well logs used for facies classification and image-guided
interpolation are marked by the black polygons.

Table 1. Statistical parameter distributions for the training data set.

in the S-wave vertical velocities degrade the up-
dates of the NMO velocities, but less so the other
way around. Although the density is estimated
with acceptable accuracy for most of the section, its values up shal-
low are distorted by the parameter trade-offs.

Next, we add facies information with the goal of mitigating the
above parameter-estimation problems and improving the inversion
results. To build a prior facies model from borehole data, we de-
velop a novel approach based on machine learning.

MACHINE-LEARNING-BASED REGULARIZATION

Classification of lithologic facies involves estimation of rock lith-
ology by analyzing such measurements as sonic and density well
logs. Usually this classification is done manually by an experienced
interpreter, which makes this process subjective and inefficient.
Here we employ machine learning (ML), which is rapidly becoming
a common tool in applied geophysics due to the advent of comput-
ing technology and availability of open-source ML libraries.

Our methodology for generating facies models via supervised
machine learning is based on so-called Support Vector Machines
(SVM). To classify facies for the entire model space, we follow
the approach suggested by Hall (2016). However, the input data
in our algorithm are derived from the elastic properties rather than
the reservoir parameters, which allows the ML model to identify the
underlying relations between the FWI-updated parameters and
borehole data. SVM is a supervised-learning method that needs
to be supplied with training data to build the re-
lationships between the input features (in our
case, elastic parameters) and the classes to which

these features belong.
Our model includes eight randomly placed

3 .
Vo (m/5) Vso (m/5) p (g/cm) Facies Depth (m) “boreholes” where sonic and density logs, as

Mean 3624 1944 2.07 1.88 690 well as information about lithologic facies, are
Std 1222 985 5.79 0.80 404 assumed to be available (Figure 6). The algo-
Min 1500 0 101 1.00 340 rithm operates with thr.ee facies, which can be
revealed by cross-plotting the P-wave vertical

25% 2924 1688 2.00 1.00 340 impedance (pVpg) and the S-wave vertical veloc-
50% 3646 2105 2.00 2.00 690 ity V. Therefore, only the parameters Vpg, Vs,
75% 4476 2584 2.44 3.00 1040 and p, which can be obtained from standard sonic
Max 6000 3464 3.00 3.00 1380 and density logs, are employed for constructing

the spatial facies model. The interpreted facies
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are also assumed to be available at the borehole locations.

Thus, the input data for training the SVM model are the param-
eters Vpg, Vo, p, and depth, which form a 4D space. The output is
the facies interpreted at the boreholes; one of the boreholes is set
aside for a blind test. In machine-learning terminology, the set of
measurements at each depth interval forms a “feature vector” asso-
ciated with a certain class (the facies type). An overview of the stat-
istical distribution of the training data can be found in Table 1.
Many machine-learning algorithms assume the feature data to be
normally distributed (i.e., the distribution is Gaussian with zero
mean and unit variance), which is not the case with our training
data set (Table 1). Therefore, we condition (or standardize) the train-
ing data so that they acquire this property. The same parameters
used to standardize the training data must be applied to any sub-
sequently classified data set. The python-based “Scikit-learn” utility
is employed to standardize the input data.

Blind test: Well 8
0
- 0.4
£
&
=
é - S N S
g0
1.2 }/

2 4

0 2 2 3 Faci Predicti
Veo(km/s) Vso(km/s) P(glemd) o redietions

Figure 7. Facies classification for the “blind” well. The rectangle
near 0.7 km marks a false facies prediction by the classification al-
gorithm.

2 0 2 4 2
x (km) y (km) x (km) y (km)

A common practice in training supervised-learning algorithms is
to separate some data from the training set to evaluate the accuracy
of the classifier. For that purpose, we employ the data from one of
the wells. It is also helpful to have a cross-validation data set to tune
the parameters of the ML network. We use 5% of the data for such
cross-validation.

After splitting the input data, we use the conditioned data set to
train a Support Vector Machine in facies classification. If the data
were linearly separable, it would be easy to draw boundaries be-
tween the input data points and identify distinct classes. Otherwise,
the data have to be projected into a higher-dimensional space for
separation purposes. The boundaries for data separation are gener-
ated during the SVM training step implemented by employing a
Gaussian-radial-basis kernel function.

During the training, the SVM algorithm achieves the accuracy
close to 98% (or the 0.98 probability of predicting the correct fa-
cies), which is consistent with the testing on the blind well where
the accuracy is 97% (Figure 7). Of course, such high accuracy can
be expected in synthetic tests. However, efficient inclusion of ML
models into the FWI framework should remain advantageous for
field data, even though the errors are likely to increase.

For the first frequency band (2-8 Hz) of the constrained inver-
sion, the facies distribution for the entire volume is built by the
trained SVM that classifies the facies for the inverted model ob-
tained by the unconstrained FWI for 2-5 Hz (Figure 8a). The facies
models for the subsequent inversion stages (Figures 8b and 8c) are
generated by the SVM classifier applied to the model obtained from
the previous inversion stage of the facies-based FWI. This facies
model allows us to predict the elastic properties, which could be
incorporated into a regularization term in the objective function
or used to build a better initial model for the next inversion stage.
Below we discuss two implementations of regularization in the fa-
cies-based FWI algorithm.

Regularization (I)

This procedure employs the model obtained from the facies dis-
tribution as the starting model for the next inversion stage. The

Figure 8. Automated facies generation (blue—fa-
cies 1; yellow—facies 2; pink—facies 3) for dif-
ferent frequency bands: (a) 2-5 Hz, (b) 2-8 Hz,
and (c) 2-13 Hz. (d) The initial velocity Vp, for
the orthorhombic model computed by the best-
matching technique described in the main text.
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model (my,,) is built by assigning at each grid point the best-
matched elastic property between the inverted model and borehole
data for a given facies:

my,, (i’ ]) = DT(nmin) |facies(i,j) ’ 12)

where

Nin = argmin,,_ ., {m(i, j) = Dr(n) |rciesij) }-

In equation 12, m is the current model, D7 is the data obtained
from the boreholes, (i, j) indicate the spatial location in the stag-
gered grid, and k is total number of the parameter values in D that
correspond to a certain facies. After the elastic properties have been
assigned, Gaussian-based smoothing (SD = 20 m) yields the initial
model for FWI (Figure 8d). Note that the model m;,, obtained from
equation 12 is used as the initial model for the next inversion stage
and is substituted into equation 1. For later iterations, my,, coincides
with the inverted model m. This procedure is repeated for the next
inversion stage.

Since the SVM classification here is about 97% accurate, equa-
tion 12 is used to compute my,, for all probable facies at each grid
point. Because SVM algorithms do not directly provide probability
estimates, the SVM “Scores and Probabilities” approach from “Sci-
kit-learn” is used to compute the facies probabilities at each grid
point (Wu et al., 2004). Hence, my,,, is constructed using a weighted
summation of an elastic property for each probable facies
[e.g., > p(facies) xm(i, j); p is the probability of the facies and
m is the desired elastic property]. Whereas for the 2-5 Hz frequency
range the unconstrained algorithm reduces the objective function by
approximately 98%, the reduction of the objective function for the
higher frequency band (2-8 Hz) is just 81%. Therefore, we obtain
the initial model for the facies-based inversion using the results for
the 2-5 Hz frequency range.

Regularization (II)

In addition to the facies-based constraints, the workflow incor-
porates direct information from sonic and density logs. Generally,
well logs can be used to estimate the profiles of the vertical veloc-
ities Vpg, V5o, V5 (if dipole sonic logs are available), and density p.
However, the anisotropy coefficients e(1), €@, (1), 52 56), (1)
and y(2> (and, therefore, the corresponding velocities) are not con-
strained by well-log data. (Note that the difference y(!) — y?) can be
obtained from dipole sonic logs.) Still, these coefficients potentially
could be found from core measurements, as demonstrated by physi-

Figure 9. Image-guided interpolation used for
regularizing the inversion. (a) The image of the in-
version gradient and (b) the Vp(-field obtained by
interpolating the well logs in Figure 6 using the
image on plot (a).

Singh et al.

cal-modeling studies (Grechka et al., 1999). It is also possible to
employ machine-learning algorithms to estimate some unavailable
parameters (Singh and Kanli, 2016).

In our synthetic experiment, however, we assume that prior in-
formation is available only for Vpy, Vgg, and p. If any of the
anisotropy coefficients can be measured on rock samples, the cor-
responding velocities (after an appropriate upscaling) can be incor-
porated into the ML framework to provide additional facies
indicators and fine-tune the classification process.

Therefore, the term my,, in the objective function (equation 1)
incorporates the parameters Vpy, Vg, and p estimated at the bore-
hole locations and interpolated and extrapolated using a migrated
image (Figure 9). As mentioned above, W, is a weighting matrix
designed to assign larger weights around the borehole locations,
where accurate lithologic information is available. Furthermore,
to be consistent with the gradient preconditioning applied to the

| Initial model (m) | Unconstrained inversion

@ Repeat until abort criteria satisfied

| Unconstrained FWI | I Inverted model |
Next inversion

First inversion
stage stage

|Inverted model (m;,,) :>] Unconstrained FWI |

m, Extract facles + . Facies-based inversion
v assign borehole properties

= Regularization (I)

| Initial model (Miny)

&
<

Image-guided interpolation
(Mprior)

<=

| FWI + Regularization (Il) |

Repeat until abort criteria

Next inversion satisfied

stage
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| Inverted model |

Extract facies + assign borehole properties
= Regularization (l)
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Figure 10. Workflow for the unconstrained and facies-based FWI.
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data-fitting term (the first term in equation 10), we apply a correc-
tion for geometric spreading to the objective function (the second
term in equation 10). This approach is similar to that in Singh et al.
(2020b), where the operator WL W, is scaled by 1/z% where z is
the depth. (Note that the amplitude decay due to geometric spread-
ing approximately is inversely proportional to z.)

The improved facies-based initial models (m,,) and direct
observation constraints (my,) are the essential elements of
our regularized FWI algorithm, whose results are discussed in
the next section. The workflow of the entire algorithm that in-
cludes both the unconstrained and facies-based FWI is shown in
Figure 10.
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Application to overthrust model

As before, FWI is carried out for all three displacement compo-
nents in the same four frequency bands (2-5 Hz, 2-8 Hz, 2-13 Hz,
2-19 Hz). This time, however, we use a more accurate facies-based
initial model for each inversion stage. Additionally, the objective
function includes the regularization term (equation 1) constructed
from borehole data.

The addition of the facies information increases the accuracy of
the inverted parameters (Figures 11 and 12). In particular, the ver-
tical velocities Vpy and Vg are estimated with a higher resolution
for the entire depth range (Figure 13). Also, the constrained inver-
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Figure 11. Results of the facies-based FWI: (a) Vp, (b) Vi, (¢) Vg, (d) Vimo 1> (€) Vimo2> and () V0 3. The arrows on plot (¢) mark regions

of increased spatial resolution and accuracy.
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sion substantially reduces the distortions in the shallow part of the
density field (compare Figure 12d to the output of the unconstrained
FWTI in Figure 5d). The improvements in the inverted P-wave NMO
velocities V01 and V. 2, however, are relatively small (compare
Figures 11d and 11e to Figures 4d and 4e) because of the weaker
sensitivity of FWI to these parameters (see above). The velocity up-
dates displayed in Figure 14 further illustrate the higher effective-
ness of the facies-based inversion compared to the unconstrained
FWI. Although the velocity V.3 is estimated with a somewhat
higher accuracy due to the improved recovery of the other param-
eters, it remains poorly resolved for most of the model.

It is also instructive to compare seismograms computed for
the models obtained by the unconstrained and facies-based inver-
sion (Figure 15). The wavefield for the model reconstructed by
our facies-based algorithm provides a better fit to the observed
data.

To generate the final spatial distribution of the facies, the trained
and tested SVM is supplied with the inverted vertical velocities Vp
and Vg and density (Figure 16). This facies model that incorporates
the FWI results provides high-resolution information for reservoir
characterization. Although here we present a simplified model con-
sisting of three facies, the proposed scheme can be extended to more

Figure 13. Vertical parameter profiles at
x =y = 110 km. The actual and initial parame-
ters are marked by the blue and red lines, respec-
tively. The parameters estimated by the
unconstrained and facies-based FWI are marked
by the violet and yellow lines, respectively.
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Figure 15. Vertical displacement from shot #50 at x = y = 2 km. The panel to left of
the dashed line contains the seismogram for the actual model, and to the right are the
seismograms for the (a) initial model, (b) model from the unconstrained inversion, and
(c) model from the facies-based inversion. The yellow boxes on plots (b) and (c) mark

regions where the two wavefields differ from one another.

x (km) y (km)

Figure 16. Facies model built automatically using the inverted
parameters from Figures 11 and 12.

facies, as long as they are supported by prior knowledge of the
study area.

CONCLUSIONS

We have developed an efficient framework for extending 3D
elastic full-waveform inversion to orthorhombic models, which
are needed to properly describe many subsurface formations.
The algorithm uses a velocity-based parameterization that is par-
ticularly effective in resolving the P- and S-wave symmetry-direc-
tion velocities. The P-wave normal-moveout velocities, however,
are more difficult to estimate because their influence on the
objective function is relatively weak. A detailed analysis of the
sensitivity of FWI to the parameters of orthorhombic media is
presented in another article.

To mitigate the trade-offs between multiple parameters of ortho-
rhombic media, our algorithm incorporates prior information about
the available geologic facies. To address the sparsity of well logs,

Offset (km)

which are used to identify the facies, a supervised
machine-learning technique (Support Vector Ma-
chine or SVM) is employed to build a 3D facies
distribution. Once that distribution for a given in-
version stage has been obtained, the elastic prop-
erties for each probable facies at all grid points
are computed by matching the model obtained at
the previous stage to the borehole data. This
process yields the parameter fields that form
the initial model for that inversion stage. Addi-
tional lithologic constraints are incorporated di-
rectly into the objective function using image-
guided interpolation of the borehole (well-log)
data with larger weights assigned to the vicinity
of the borehole locations.

Application of this algorithm to a 3D ortho-
rhombic overthrust model results in a substantial
improvement in the spatial resolution of most in-
verted parameters compared to the output of the
unconstrained FWI. [It should be noted that the
performance of the unconstrained FWI is in
broad agreement with the analysis of the radia-
tion (scattering) patterns.] In particular, the P-
and S-wave velocities in the symmetry directions
(especially the vertical velocities) are estimated with much higher
accuracy, even without ultra-low-frequency (0-2 Hz) data. The al-
gorithm also produces a better density model for the shallow part of
the model. There is an improvement in the inverted P-wave NMO
velocities as well, although the velocity V,, 3 remains the least-re-
solved medium parameter.

0.0 0.95 19
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APPENDIX A

INVERSION GRADIENTS FOR
ORTHORHOMBIC MEDIA

We assume that the symmetry planes of orthorhombic media
coincide with the coordinate planes of a Cartesian coordinate frame.
The model is parameterized by the P- and S-wave vertical velocities
(Vpg, Vo, and V1), P- and S-wave symmetry-direction horizontal
velocities (Vp;, Vp,, and V,), P-wave normal-moveout velocities
(Vamo.1> Viamo2> and Vyn03), and density (p) (see equations 3-9).
The pertinent stiffness coefficients in the two-index (Voigt) notation
are related to these velocities as follows:
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c11 = PV12>27 (A-1)
Coyy = le%l’ (A—2)
c33 = PV (A-3)
Ci2 = /’{ \/[V%’Z - V%Z][Vﬁmo 3 V%z] - V%z}v (A-4)
i3 = P{\/W%o - V%O][szlmo2 V§0] - V%o}v (A-5)
en=o{\/ VR = VilVao - RI- V2 }. a0
can = pVi. (A-7)
css = pV3o. (A-8)
ces = PV (A-9)

The gradient of the [>-norm objective function (equation 1;
p =0) for arbitrarily anisotropic elastic media is obtained by
Kamath and Tsvankin (2016) as:

oE . ac,-jkl Tau dl//k
om, o om, \Jo 6x 0x;

(A-10)

where the indices i, j, k,l =1,2,3, T is the total time of wave
propagation, u and y are the forward- and back-propagated dis-
placement fields, respectively, and the vector m includes the model
parameters (in our case, m; = Vpg, my = Vp;, m3 = Vp,,
My = Vimo 1> Ms = Vimo2, Me = Vimoss M7 = Vg, mg = Vg,
my = Vs, and myo = p).

The derivatives of the objective function with respect to these
parameters are (here x = x|, y = x,, and z = x3):

oE _ oy /T Oy, Ou,, n oy, % [
0Vpo POJy I\ oz ox " ox 0z ) 2
+ (%% + A %) 93

oy, du,
dy 0z 0z dy ) 2 0z 0z

]d; (A-11)

OE T (dyr, 0
== p,/ AT ) ar, (A-12)
OVPI dy dy
%E _ v /T Qw Ouy | O Ot 4
0Vpy P20, [\ox ay " ay ox /) 2
oy, ou,
;’; ax]d, (A-13)
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OE Tl (0w, 0u, oy, ou,\ 1
= _pvnmo,l / ﬂ_z_’_ — dl,
0V imo,1 0 dy 0z 02 dy

(A- 14)

oy, du,\ 1
— | —|dt,
+ ox aZ) QQ:|

(A-15)
oy, 0 1
el dt,
()x 0y

oE T[(oy,.0u, oy, du 1
=y Wz Hx M N (0
Vg P SO/O [(61 ox + ox 52)( % q> )

oy, Ooy,\ (du, Ou,
2 Fz
+ (0 + ox oz  Ox at,

oE v / T\ oy, du,
Womon L mme2 Jo | "oz ax

oE T[ /oy, ou,
= - Vnm -
Vomos % K oy ox | ox

oE T[ /oy, ou, Ow,odu 1
Z—PVS1/ K A=~ - — =2
Vg 0 dz dy dy 0z qs

oy, \ (du, Ou,
2 7y, e
* <6Z+0y 0z+0y ar,

JoE T[ /oy, ou, ow,ou 1
—=—pvsz/ o | S TP
Vg, 0 dy ox ox dy qi

oy, Oy, (du, Ou,
2 — dt,
+ <ay + ox dy e 0x
(A-19)

JoE T du, oy ou, oy, ou, oy
o VZ z 2z V2 Y y VZ X x
op A { PO(()Z 6z>+ Pl(()y dy i ox Ox +

r 1 /oy, ou, ay/ ou,
_\/(Vﬁmm sz)(V%2_V§2)_V§2_ ( 6; ox axx dy
r 1/ ow.ou 01// ou,
\/ (Vamor = so)(Vl%O_Vg())_VgO_ (6_1 6); axA 0z
r 1/ ow. ou, 0y/ ou,
\/(Vﬁmol V%l)(vgo_vgl)_vé_ ( aZ 6y ayv aZ

oy, Oy,\ (du, Odu, , (0w, Oow,\ (ou, Ou,
Vv —= = ViS22 5+ =2
SO<0z+0x 0z+6x + 6y+6z 0y+0z +
o 0 ouy, 0
V%z( W - W)> ( + ux) +vxll’x+vy‘l’y+vz‘}’z}dt,

ox 0
(A-20)

where
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2 2 2 2
g = Vnmo,3 B VSZ ¢ = Vnm0.2 - VSO
1= 2 2 2= 2 2
VP2 - VSZ VPO - VSO

and

Here v and ¥ are the forward- and back-propagated velocity
fields, respectively.
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