
Computational Geosciences (2023) 27:793–804
https://doi.org/10.1007/s10596-023-10222-5

ORIG INAL PAPER

Modeling 3-D anisotropic elastodynamics using mimetic finite
differences and fully staggered grids

Harpreet Sethi1 · Fatmir Hoxha2 · Jeffrey Shragge1 · Ilya Tsvankin1

Received: 28 October 2022 / Accepted: 15 May 2023 / Published online: 26 July 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Accuratemodeling of elasticwavefields in 3-D anisotropicmedia is important formany seismic processing and inversion appli-
cations. However, efficient wavefield simulation for tilted transversely isotropic (TTI) media and, especially, for orthorhombic
and lower symmetries remains challenging. Finite-difference (FD) implementations using centered Taylor-series coefficients
on singly staggered grids suffer from reduced numerical accuracy due to problems in computing the partial wavefield deriva-
tives in TTI or tilted orthorhombic (TOR) media, as well as in enforcing the free-surface (zero-traction) boundary conditions.
To address these issues, we develop a 3-D mimetic FD (MFD) algorithm for arbitrarily anisotropic media that uses a fully-
staggered-grid strategy. This CUDA-based algorithm is implemented on graphics processing units (GPUs) to leverage the
massive parallelism of this computer architecture. For multi-GPU parallelization, we employ the CUDA-aware message
passing interface (MPI) library to exploit the remote direct memory access (RDMA) feature for buffer transfers. Weak- and
strong-scaling tests on up to eight DGX NVIDIA A100 nodes (64 GPUs in total) demonstrate that the proposed multi-GPU
implementation achieves a quasi-linear computational speedup with over 98% efficiency for large industrial-scale models of
size in excess of 1.7×1010 grid points.

Keywords Elastic media · Anisotropy · Orthorhombic symmetry · Wave propagation · Finite-difference modeling · GPU ·
Boundary conditions

Mathematics Subject Classification (2010) 86-08 · 86-10

1 Introduction

Generating accurate wavefield solutions for large-scale 3-D
anisotropic elastic models is a computationally challenging
problem. There is a need for efficient modeling engines for
arbitrarily anisotropic media that maintain high accuracy

B Harpreet Sethi
hsethi@mines.edu

Fatmir Hoxha
fhoxha@nvidia.com

Jeffrey Shragge
jshragge@mines.edu

Ilya Tsvankin
itsvanki@mines.edu

1 Department of Geophysics, Colorado School of Mines,
1500 Illinois Street, Golden 80401, CO, US

2 NVIDIA Corporation, 2788 San Tomas Expressway,
Santa Clara 95050, CA, US

of the overall numerical scheme. An additional complex-
ity is in implementing the correct boundary conditions at
interfaces (e.g., at a free surface, fluid/solid interface) with
pronounced property contrasts. Inaccurate handling of the
boundary conditions with lower-order numerical approxima-
tions canproduce significantwavefield distortions, especially
for surface waves [1]. Here, we aim to improve the per-
formance of 3-D elastic anisotropic wavefield solvers by
developing a computationally efficient propagator with accu-
rate high-order implementation of the free-surface boundary
conditions (FSBC) using multiple graphic processing unit
(GPU) cards [2].

The advent of GPUs as accelerators in elastic wavefield
modeling, imaging, and inversion is due to their single-
instructionmultiple-data (SIMD) nature. Numerousmethod-
ologies for modeling wave propagation have been developed
and ported to GPUs. A GPU-based spectral-element method
for simulating elastic wave propagation at the continental
scale is introduced in [3]. That work employs nonblocking

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-023-10222-5&domain=pdf

794 Computational Geosciences (2023) 27:793–804

communication based on a message passing interface (MPI)
framework to overlap the data transfer with computations
on GPUs across the network via the peripheral component
interconnect express (PCIe) bus. The portability of a higher-
order discontinuous Galerkin method for modeling of elastic
wave propagation on a single GPU using unstructured tetra-
hedral meshes is studied in [4]. Articles [5] and [6] discuss
theGPU implementation of finite-difference (FD) algorithms
designed to solve the acoustic wave equation. The solutions
of the 3-D isotropic elastic wave equation on multiple GPUs
are presented in [7]. A FD algorithm for modeling elastic
wave propagation in anisotropic media is introduced in [8],
which also discusses both single- and multi-GPU implemen-
tations. FD solutions of the anisotropic elastic wave equation
using singly and fully staggered grids (SSGs and FSGs,
respectively) are discussed in [9].

FD methods are often employed for modeling seis-
mic wavefields in exploration geophysics because of their
advantages in terms of implementation, code paralleliza-
tion, compact stencils, and moderate computational cost.
However, they suffer from reduced numerical accuracy in
anisotropic media without a horizontal symmetry plane due
to the challenge of interpolating the results of calculating the
partial wavefield derivatives, especially near the free surface
and fluid/solid interfaces [10].

Using FD methods based on mimetic (MFD) operators
with fully staggered grids (FSGs) overcomes this issue by
preserving the underlyingphysics of the employedpartial dif-
ferential equations (PDE) in the discretization process [11].
Applying FSGs obviates the need for interpolating partial
wavefield derivatives, thus making it easier to implement the
algorithm for arbitrarily anisotropic media [12]. The perfor-
mance of the MFDmethod for acoustic wave propagation on
CPUs and GPUs is analyzed in [13]. They discuss 1-D and
2-D implementations using a second-order formulation of
the acoustic wave equation and show that the performance of
the GPU implementations is consistently better (i.e., they are
6-12 faster) compared to their optimized CPU counterparts.

In thiswork,we employGPUs to solve the 3-D anisotropic
elastic wave equation using the MFD+FSG approach. Our
implementation involves a velocity-stress formulation with
FSGs that can handle arbitrarily anisotropic media with-
out losing global numerical discretization accuracy. The
MFD+FSG algorithm and MFD operators are applied only
to the near-surface model components to reduce the thread
divergence of CUDA kernels. Absorbing boundary condi-
tions are used on the five remaining model faces. Multi-GPU
communications are handled with a CUDA-aware MPI
library both within single and across multiple nodes.

The paper begins with a review of the theory of elas-
tic wave propagation in anisotropic media, the free-surface
boundary conditions, and the velocity-stress formulation
of the elastic wave equation for orthorhombic media [14]

with a horizontal symmetry plane. Next, we describe the
major algorithmic steps of the MFD+FSG approach, as well
as our CUDA-based multi-GPU implementation. Then, we
present numerical examples using large-scale models and
benchmark our solution with the spectral-element method.
Code-profiling and scaling performance tests are performed
for up to 64 GPUs on eight Nvidia A100 nodes. Finally, we
present the roofline plot illustrating the performance of the
algorithm and discuss future improvements of this method.

2 Elastodynamics theory

The 3-D elasticwave equation in a heterogeneous anisotropic
medium can be written as:

ρv̇i = ∂ jσi j + fi , (1)

where ρ is the density, vi is the i th component of the particle
velocity, the dot marks the temporal derivative, σi j is the
stress tensor, ∂ j denotes the differentiation with respect to
the coordinate x j , and fi is the body force per unit volume.
We use the following linear constitutive relationship (i.e.,
generalized Hooke’s law) between the temporal derivatives
of the stress (σi j) and strain (εkl) tensors,

σ̇i j = C jkl ε̇kl , (2)

where Ci jkl is the (time-independent) stiffness tensor and

ε̇kl = 1

2

(
∂lv

s
k + ∂kv

s
l

)
. (3)

The free-surface boundary conditions (FSBC) require a
vanishing traction vector across the free surface,

σi j n j = 0, (4)

where n j are the directional cosines for a unit vector orthogo-
nal to the area (surface) element. Assuming a flat free surface
at x3 = 0, Eq. 4 yields the following three conditions:

σ13 = σ23 = σ33 = 0. (5)

3 3-DMFD+FSG approach

Generating globally high-order [i.e., O(�x4) or greater]
accurate implementations of the FSBC specified in Eq. 5
remains challenging for standard FD methods even for sim-
ple Cartesian geometries. Numerical solutions that satisfy
the (anisotropic) elastic wave equations and the boundary
conditions with the same accuracy tend to become unstable.
In addition, many lower-order-accuracy boundary-condition

123

Computational Geosciences (2023) 27:793–804 795

implementations introduce unphysical ghost points to ensure
the continuity of the wavefield derivatives obtained with
two-sided FD operators [15]. In addition, wave-equation dis-
cretizations based on standard Taylor-series FD operators do
not honor such underlying physical concepts as the conserva-
tion laws and tensorial calculus properties that are naturally
satisfied by their continuum counterparts [16]. These short-
comings lead to numerical instabilities and errors in the
simulated wavefields.

An efficient way to address these issues is by employing
mimetic operators [16–18]. The MFD divergence and gra-
dient operators, D and G, honor global conservation laws
[16] and can be constructed with O(�x4) (or greater) accu-
racy throughout the entire computational domain including
at and near boundaries and partitioned interfaces [10, 11, 18].
We use fully staggered grids (FSG) to implement the MFD
operators because such grid layout increases the numerical
stability by making all partial wavefield derivatives avail-
able at each grid point [12, 19]. In contrast to SSGs, this
approach eliminates the need for costly high-order interpola-
tion of partial derivatives [12, 20]. Employing an FSG system
is particularly useful for lower-symmetry anisotropic models
including the most general, triclinic symmetry characterized
by 21 independent stiffnesses [20].

A 3-D FSG grid includes four complementary SSGs com-
posed of one base grid and three others staggered by half-grid
spacing in the three orthogonal directions. Figure 1a shows
the distribution of the particle-velocity variables defined on
four SSG grids that form the FSG system: [v, v, v], [v, f, f],
[f, v, f] and [f, f, v], where f ∈ R

N+2, v ∈ R
N+1 and N

represents the number of points in the model along the
x = [x1, x2, x3] coordinate directions. (Note that in follow-
ing figures we use x = [x, y, z] in accordance with common
geophysical convention.) In Fig. 1a, one also can see the num-
ber of points corresponding to each SSG grid that contribute
to the injection and extraction of the velocity variables in a
single FSG cell. The [v, v, v] grid contributes eight points at
the corners in an FSG system, whereas the [v, f, f], [f, v, f],

and [f, f, v] grids contribute two points each at the face center
in Fig. 1a.

Similarly, the stress variables have to be defined on four
SSG grids: [f, f, f], [v, f, v], [v, v, f], and [f, v, v]. Figure 1b
shows the number of points corresponding to each employed
SSG grid. The [f, f, f] grid contributes one point in the cell
center. The [v, f, v], [v, v, f], and [f, v, v] grids contribute
four points each in Fig. 1b. For injection and extraction of
the velocity and stress wavefields, different weighting coeffi-
cients need to be used for different grids as explained below.

Mimetic operators Di and Gi act on the complementary
SSG grids in 1-D fashion but along the three coordinate
directions. Operator Gi is applied to the field variables
defined on the f-grid and maps them to a vector defined on
the v-grid. Operator Di acts on the field variables defined on
the v-grid and maps them to a vector defined on the f-grid.
The next section describes the discretization of the stress-
velocity formulation with MFD operators for orthorhombic
media with a horizontal symmetry plane. However, one can
extend this formalism to arbitrarily anisotropic media in a
straightforward fashion.

3.1 Stress-field updating

The stress-updating equation for 3-D orthorhombic media
with a horizontal symmetry plane can be written as (see Eqs.
2 and 3):

σ̇11 = c11
∂v1

∂x1
+ c12

∂v2

∂x2
+ c13

∂v3

∂x3
, (6)

σ̇22 = c12
∂v1

∂x1
+ c22

∂v2

∂x2
+ c23

∂v3

∂x3
, (7)

σ̇33 = c13
∂v1

∂x1
+ c23

∂v2

∂x2
+ c33

∂v3

∂x3
, (8)

Fig. 1 Coupled system of SSGs
inside a 3-D MFD+FSG cell. (a)
The [v, v, v], [v, f, f], [f, v, f],
and [f, f, v] grid points are in
red, green, blue, and yellow,
respectively. (b) The [f, f, f],
[v, f, v], [v, v, f], and [f, v, v]
grid points are in blue, green,
red and yellow, respectively

123

796 Computational Geosciences (2023) 27:793–804

σ̇12 = c66

(
∂v2

∂x1
+ ∂v1

∂x2

)
, (9)

σ̇13 = c55

(
∂v3

∂x1
+ ∂v1

∂x3

)
, (10)

σ̇23 = c44

(
∂v3

∂x2
+ ∂v2

∂x3

)
, (11)

where ci j are theCi jkl stiffness coefficients from Eq. 2 repre-
sented in the two-index (Voigt) notation. All stress variables
are defined on the four complementary staggered grids men-
tioned above. For example, the σ̇i j updates, herein assumed
to be computed on the half time step n + 1

2 , are obtained on
the grid [f, f, f] using MFD operators:

σ̇
[f , f , f]
11 = c11D1v

[v, f , f]
1 + c12D2v

[f ,v, f]
2 + c13D3v

[f , f ,v]
3 , (12)

σ̇
[f , f , f]
22 = c12D1v

[v, f , f]
1 + c22D2v

[f ,v, f]
2 + c23D3v

[f , f ,v]
3 , (13)

σ̇
[f , f , f]
33 = c13D1v

[v, f , f]
1 + c23D2v

[f ,v, f]
2 + c33D3v

[f , f ,v]
3 , (14)

σ̇
[f , f , f]
12 = c66

(
D1v

[v, f , f]
2 + D2v

[f ,v, f]
1

)
, (15)

σ̇
[f , f , f]
13 = c55

(
D1v

[v, f , f]
3 + D3v

[f , f ,v]
1

)
, (16)

σ̇
[f , f , f]
23 = c44

(
D2v

[f ,v, f]
3 + D3v

[f , f ,v]
2

)
, (17)

where the variables vi are assumed to be computed on the
whole time step n. The superscripts denote the SSG grid
where the variables are defined. Table 1 shows the stress
updates for the other complementary SSG grid staggerings.

3.2 Velocity-field updating

The velocity-updating equation for 3-D orthorhombic media
defined in Eq. 1 can be obtained using

ρ v̇1 = ∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3
, (18)

ρ v̇2 = ∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3
, (19)

ρ v̇3 = ∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3
, (20)

Table 1 Updates of the stress variables obtained from the velocity vari-
ables defined on four different staggered grids (SGs) using cyclic MFD
operators

Updated variable SG1 SG2 SG3 SG4
σ [v, v, v] [v, f, f] [f, v, f] [f, f, v]
[f, f, f] — D1 D2 D3

[f, v, v] D1 — G3 G2

[v, f, v] D2 G3 — G1

[v, v, f] D3 G2 G1 —

where the components v̇i and σi j are again assumed to be
obtained on the whole (n) and half-time (n+ 1

2) steps, respec-
tively.

Similarly, all velocity variables are defined on the four
complementary staggered grids mentioned above. For exam-
ple, the update of the velocity fields on the [v, v, v]-grid can
be computed using MFD operators as follows:

ρv̇
[v,v,v]
1 = G1σ

[f ,v,v]
11 + G2σ

[v, f ,v]
12 + G3σ

[v,v, f]
13 , (21)

ρv̇
[v,v,v]
2 = G1σ

[f ,v,v]
21 + G2σ

[v, f ,v]
22 + G3σ

[v,v, f]
23 , (22)

ρv̇
[v,v,v]
3 = G1σ

[f ,v,v]
31 + G2σ

[v, f ,v]
32 + G3σ

[v,v, f]
33 . (23)

The superscripts denote the SSG grids where the variables
are defined. The velocity updates obtained using MFD oper-
ators for the other complementary SSG grid staggerings are
displayed in Table 2.

3.3 Free-surface implementation

The mimetic nodes at the free surface are updated using the
strategy described in [10] by employing the zero-traction
FSBC (Eq. 5). The velocities v

[f , f ,v]
1 , v

[f , f ,v]
2 and v

[f , f ,v]
3

at the free-surface mimetic points for orthorhombic media
are obtained by setting σ̇

[v, f ,v]
33 = σ̇

[v, f ,v]
23 = σ̇

[v, f ,v]
13 = 0 at

x3 = 0:

c13 G1v
[f , f ,v]
1 + c23 D2v

[v,v,v]
2 + c33G3v

[v, f , f]
3 = 0, (24)

G3v
[v, f , f]
2 + D2v

[v,v,v]
3 = 0, (25)

G1v
[f , f ,v]
3 + G3v

[v, f , f]
1 = 0. (26)

Next, we split up the gradient operators according to
G1v1 = G1[0]vM

1 + G†
1v

†
1 etc. where the superscript M

represents mimetic boundary points, and the symbol † indi-
cates all points excluding the mimetic boundary points. (See
Appendix A for fourth-order examples of Gi and Di.) This

Table 2 Updates of the velocity variables from the stress variables
defined on four different staggered grids (SGs) using cyclic MFD oper-
ators

Updated variable SG1 SG2 SG3 SG4
v [f, f, f] [f, v, v] [v, f, v] [v, v, f]
[v, v, v] — G1 G2 G3

[v, f, f] G1 — D3 D2

[f, v, f] G2 D3 — D1

[f, f, v] G3 D2 D1 —

123

Computational Geosciences (2023) 27:793–804 797

definition allows us to rearrange Eqs. 24-26 to obtain

vM
1 = 1

c13G1[0]
(
−c13G

†
1v

[f , f ,v]
1 − c23D2v

[v,v,v]
2

−c33G3v
[v, f , f]
3

)
, (27)

vM
2 = − 1

G3[0]
(
−G†

3v
[v, f , f]
2 − D2v

[v,v,v]
3

)
, (28)

vM
3 = − 1

G1[0]
(
−G†

1v
[f , f ,v]
3 − G3v

[v, f , f]
1

)
, (29)

whereG1[0] andG3[0] denote the coefficients of themimetic
gradient operator at x1 = 0 and x3 = 0, respectively.
Mimetic velocity nodes v

[f ,v, f]
1 , v

[f ,v, f]
2 , and v

[f ,v, f]
3 are

updated in a similar fashion.

3.4 Absorbing boundary conditions

We implemented the convolutional perfectly matched layer
(C-PML) boundary conditions [21, 22] on the remaining five
model sides. The implementation of the absorbing conditions
is straightforward; however, due to the intertwining of four
staggered grids, the C-PML conditions must be applied on
all four grids for the velocity and stress field variables alike.

3.5 Source injection and wavefield extraction

The coupling of multiple grids requires distributed source
injection and wavefield extraction in an FSG system. The
distribution of stress nodes on four SSGs which are involved
in the cell-centered injection and extraction in the FSG sys-
tem is shown in Fig. 1b. The stress nodes on [f, f, f] are
injected with a unit weight, whereas the nodes at the three
other SSGs are injected with a weight of 0.25. The stress
nodes on [f, f, f] are extracted with a 0.25 weight, and the
rest of the three SSGs are extracted with a weight of 0.0625.
Figure 1a illustrates the distribution of the velocity nodes on
the four SSGs involved in the cell-centered velocity injection
and extraction. The velocity nodes on [v, v, v] are injected
with a weight of 0.125 and the three other SSGs are injected
with a weight of 0.5. The velocity nodes on [v, v, v] are
extracted with a weight of 0.03125 and other three SSGs
are extracted with a weight of 0.125.

4 GPU Implementation

Concurrently running thousands of threads on GPUs leads to
significant speedups compared to CPU implementations. To
simplify the GPU code, we make several algorithmic mod-
ifications. First, all four SSGs are adjusted to coincide with
the [f, f, f] grid [i.e., (N + 2, N + 2, N + 2)]. Second, to
minimize the thread divergence we apply MFD operators to

Table 3 Pseudocode that outlines the main steps of the 3-DMFD+FSG
numerical solution and references the relevant equations

Step Substep Instruction Equation(s)

0 Read stiffness matrix, source
wavelet, and density fields.

—

1 Initialize data structures on GPU
and copy the data from CPU to
GPU.

—

2 For all time steps: —

3 Update mimetic stress nodes 6-11

4 Update stress field 6-11

4a Update stress halos —

4b Asynchronously communicate
stress halos and compute stress in
the middle.

—

5 Inject source —

6 Update mimetic velocity nodes 18-20

7 Update velocity field 18-20

7a Update velocity halos —

7b Asynchronously communicate
velocity halos and compute
velocity in the middle.

—

8 Apply FSBC 5 and 27-29

9 Iterate steps 1-8 —

compute the partial derivatives only near the free surface for
implementation of the FSBC; the absorbing boundary con-
ditions are applied on the other five model sides.

The major algorithmic steps, including updating velocity
and stress wavefield variables, source injection and wave-
field extraction, and FSBC application are implemented as
separate GPU kernels. The C-PML absorbing boundary con-
ditions are applied as part of updating the stress and velocity
kernels. Table 3 shows the major steps in our MFD+FSG
algorithm; Steps 3-8 are implemented as GPU kernels. We
use the strategy proposed in [5] for updating the field vari-
ables to reduce global memory usage and read redundancy.
The order of axes from fast to slow is x1, x2, and x3. The
data in the fast [x1, x2]-plane are loaded into the shared
memory, while the variables along x3-axis are held in regis-
ters. Domain decomposition is performed along the x3-axis
(Fig. 2) to facilitate the application of FSBC and transfer the
data only in the x3-direction.

The intertwining of the four SSGs introduces greater algo-
rithmic complexity. For example, v

[v, f , f]
1 is only involved

in the update of σ
[f , f , f]
11 , σ [f , f , f]

22 , and σ
[f , f , f]
33 , but not in

updating the other stress components of the same SSG. How-
ever, the overall redundancy of the algorithm is same as that
for SSGs. The v

[v, f , f]
1 still contributes to the partial update

of the shear-stress (σ [v, f ,v]
23 and σ

[v,v, f]
13) components of the

intertwined SSGs. First, we read and load v
[v, f , f]
1 to shared

123

798 Computational Geosciences (2023) 27:793–804

Fig. 2 1-D domain
decomposition along the
x3-direction for the example of
four GPUs. The dashed line
marks the domain-boundary
halo regions that need to be
communicated to the GPU(s)
hosting adjacent compute
domains

memory, and then partially update the three stress com-
ponents to reduce the number of global memory accesses.
Updating the shear stress components requires the field v1
to be defined on different SSGs; however, such redundancy
is not feasible for the velocity update kernel that relies on
different stress components.

The partial derivatives are first stored in the registers
before applying Hooke’s law to facilitate application of the
absorbing boundary conditions. The C-PML is applied dur-
ing the stress and velocity update and the size of the C-PML
must be an integer multiple of 16 to reduce the thread diver-
gence. The damping coefficient and other state variables
associated with C-PML are stored in constant memory along
with the mimetic operators. However, the convolutional vari-
ables for C-PML are stored in the device memory because of
their large size.

We use CUDA streams to compute the FD halo regions,
update mimetic nodes, and communicate data in halo regions
across GPUs for both single- and multi-node implementa-
tion. Figure 3 shows the CUDA code profile for two GPUs.

The communication of the halo region across the GPUs in
Fig. 2 completely overlaps with velocity and stress compu-
tation in the internal region. For communication, we employ
a CUDA-Aware MPI library, which can directly use the
GPUDirect technologies and theRDMAfeature. That feature
permits direct inter-GPU communication in the GPU buffers
without first staging them to the CPU through a connector.
NVIDIA GPUDirect technologies provide high-bandwidth,
low-latency communications with NVIDIA GPUs and cover
all types of inter-rank communications (intra-node, inter-
node, and RDMA inter-node).

5 Numerical examples

For numerical tests, we use the O(�x4) MFD divergence
and gradient operators. The algorithm is applied to an
orthorhombicmodel [23]with the symmetry planes that coin-
cide with the Cartesian coordinate planes. The model size
is [Nx , Ny, Nz] = [600, 500, 320] with a uniform 10 m

Fig. 3 Overlap of computation
and communication across two
GPUs. The upper and lower
parts of the plot represent the
workflow of two MPI processes
corresponding to two GPUs.
The blue boxes mark the
computational kernels and the
brown ones mark the
communication between the
GPUs. The exchange of the
velocity and stress halos
completely overlaps with
computation of the internal
velocity and stress nodes,
respectively

123

Computational Geosciences (2023) 27:793–804 799

Fig. 4 Snapshots of the velocity
components (a) v1, (b) v2 and
(c) v3 extracted at t=0.4 s. The
model is a homogeneous
orthorhombic solid with the
following Tsvankin’s [14, 23]
parameters: VP0 = 2.0 km/s,
VS0 = 1.2 km/s, ε1 = 0.2, ε2 =
0.15, δ1 = 0.1, δ2 = 0.07, δ3 =
0.05, γ1 = 0.1, and γ2 = 0.2. The
P, S1, and S2 annotations on
plot (b) denote the
compressional, fast shear, and
slow shear waves, respectively

discretization spacing. We inject a Ricker wavelet with a
20 Hz peak frequency and time increment �t = 0.5 ms at
[x, y, z] = [2.25, 2.25, 1.0] km. After running the simula-
tion for 3000 time steps, we observe both P- and S-wavefields
that include free-surface reflections and mode conversions,
as illustrated in Fig. 4a-c. Also, the shear-wave splitting into
the fast (S1) and slow (S2) modes is visible in the [x, y]-plane
(Fig. 4b).

Next, we consider a model composed of two horizontal
orthorhombic layers with the parameters listed in Table 4.
The model size is [Nx , Ny, Nz] = [600, 500, 400] with a
uniform 10 m grid spacing. We inject a Ricker wavelet with
a peak frequency of 20 Hz and �t = 0.2 ms at [x, y, z] =
[3.0, 3.0, 1.0] km. Figure 5 displays particle-velocity snap-
shots for all three components with the layer boundaries
underlain. We observe the S-wave splitting, as well as P-
and S-wave reflections from the layer boundaries and the
free surface. A good match between the MFD (red) and
spectral-element [24] (black) solutions confirms the numer-
ical accuracy of our GPU algorithm (Fig. 6).

For the final test, we consider a heterogeneous model
based on a section from the Northern Carnarvon Basin
(NCB) located on Western Australia’s North West Shelf
[25, 26]. We modify the original isotropic model to make
it orthorhombic and obtain the Tsvankin parameters [14, 23]
by scaling the P- and S-wave velocities and density (see
Fig. 7). The entire model is subsampled to [Nx , Ny, Nz] =
[1000, 800, 480] with a uniform 5 m grid spacing. A Ricker
wavelet with a 20 Hz peak frequency and �t = 0.01 ms is
injected at [x, y, z] = [2.5, 2.0, 1.2] km. Figure 8 shows the
particle-velocity components that exhibit complex sea-floor
scattering nodes (Fig. 8b), surface waves, and P- and S-wave
reflections.

6 Performance analysis

We test the code on GPU nodes of a DGX A100 system,
which consists of eightA100GPUs (80GBper card) per node
interconnected via NVLINK. Figure 9a shows the weak-

Table 4 Tsvankin’s parameters
for the model with two
horizontal orthorhombic layers.
The depth of the interface is
2 km

Layers VP0 VS0 ρ ε1 ε2 δ1 δ2 δ3 γ1 γ2
Unit km/s km/s g/cm3 — — — — — — —

Top 2.5 1.3 1.0 0.2 0.1 0.15 0.1 0.07 0.1 0.2

Bottom 3.0 1.6 2.0 0.25 0.17 0.12 0.05 0.05 0.1 0.2

123

800 Computational Geosciences (2023) 27:793–804

Fig. 5 Snapshots of the velocity
components extracted at t=0.4 s
for the orthorhombic model
from Table 4: (a) v1, (b) v2, and
(c) v3

scaling efficiency tests (i.e., the model size per GPU is the
same) when using up to 64 GPUs (or 8 DGX A100 nodes).

The model size is [Nx , Ny, Nz] = [1024, 1024, 256 × N],
where N is the number of GPUs. We see a minor drop in the

Fig. 6 Comparison of the
seismograms computed by our
algorithm (“MFD”) and the
spectral-element method
(“Specfem”). The
particle-velocity components
recorded at
[x, y, z] = [3.0, 2.0, 0.0] km
[(a) v1, (c) v2, and (e) v3]; and at
[x, y, z] = [2.0, 3.0, 0.0] km
[(b) v1, (d) v2, and (f) v3]

123

Computational Geosciences (2023) 27:793–804 801

Fig. 7 Parameters of an
isotropic medium from the
Western Australia Modeling
project (WAMO) based on a
model developed for the
Carnarvon Basin on the Western
Australian Shelf: (a) VP , (b) VS ,
and (c) ρ [25, 26]

Fig. 8 Snapshots of the velocity
components (a) v1, (b) v2, and
(c) v3 extracted at t=0.8 s. The
superimposed model represents
an orthorhombic extension of
the isotropic WAMO model
from Fig. 7

123

802 Computational Geosciences (2023) 27:793–804

Fig. 9 (a) Weak-scaling
efficiency for
[Nx , Ny, Nz]=[1024, 1024, 256×
N]. (b) The strong-scaling
efficiency for
[Nx , Ny, Nz]=5123

performance after moving from eight GPUs on one node to
64 GPUs on eight nodes (Fig. 9a). However, the efficiency
remains above 98% in comparison with single-node GPU
runs. The blue line in Fig. 9a suggests a negligible com-
munication overhead incurred by NVLINK for single and
InfiniBand for multi-node tests.

For the strong-scaling test we use the model size [Nx , Ny,

Nz] = 5123 and increase the number of GPUs, while fixing
the model dimensions. Figure 9b shows the results of the
speedup test as we increase the number of A100 GPUs from
one to eight within a single node. Overall, we observe quasi-
linear speedup in the strong-scaling efficiency test.

The “roofline plot” in Fig. 10 illustrates the peak per-
formance of the algorithm expected with the given GPU
architecture. The blue curves indicate the maximum single-
and double-precision performance that can be achieved on
Nvidia A100 GPUs with the given arithmetic intensity of the
developed algorithm. Overall, the performance of the imple-
mented MFD+FSG algorithm is close to the achievable peak
value.

7 Discussion

The MFD+FSG algorithm scales well with increasing num-
ber of GPUs using the MPI+CUDA framework. However,

we have not considered such optimizations as the 1-D
kernel-level decomposition of the model instead of the cur-
rent 2-D, utilization of constant memory, grid transposition,
and other specific GPU architecture improvements, which
would be interesting to explore in the future.

The roofline plot in Fig. 10 also indicates that the arith-
metic intensity of the MFD+FSG algorithm is insufficient
to fully utilize the maximum resources on A100 GPUs.
Efficiency improvements could likely be achieved by using
higher-order MFD stencils that involve additional floating
point operations per grid point. In general, FSG-based algo-
rithms (including the one presented here) achieve higher
accuracy than SSG-based codes using the same grid spac-
ing, but are more memory-intensive due to the use of four
times as many computational grids.

8 Conclusions

We developed an efficient GPU-based MFD+FSG algorithm
using the velocity-stress formulation of the anisotropic elas-
tic wave equation. The algorithm can be used for large-scale
models (i.e., Nx × Ny × Nz > 5123) with orthorhombic
and even lower symmetry. The weak- and strong-scaling
tests demonstrate that the communication overhead using
the CUDA-Aware MPI library is negligible for both single-

Fig. 10 Roofline plot for the
MFD+FSG algorithm. The
horizontal axis represents the
number of floating point
operations (FLOPs) performed
per byte and the vertical axis
represents the overall
performance in FLOPs/s. The
red dot marks the actual
performance of our MFD+FSG
algorithm relative to the
theoretical performance shown
in blue

123

Computational Geosciences (2023) 27:793–804 803

and multi-node GPU systems. Comparison of the simulated
wavefields with those generated by the spectral-element
method confirms the numerical accuracy of our algorithm.
We also tested the algorithm using up to 64 A100 GPU cards
on eight nodes and achieved a quasi-linear computational
speedup with over 98% efficiency.

Appendix A - MFD operators

The fourth-order 1-D mimetic divergence operator [18]
D ∈ R

(N+2,N+1) operating on the N -point grid is given by:

Di = 1

h

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
−11
12

17
24

3
8

−5
24

1
24 0

0 1
24

−9
8

9
8

−1
24 0

0 0 1
24

−9
8

9
8

−1
24 0

...
...

...
. . .

. . .
. . .

...
...

...

. 0 1
24

−9
8

9
8

−1
24 0 . . .

. 0 −1
24

5
24

−3
8

−17
24

11
12

. 0 0 0 0 0 0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, (30)

where the dots indicate the repetition of the stencil coeffi-
cients in the corresponding direction, and h is the spatial
discretization along the i th direction.

Thefourth-order1DmimeticgradientoperatorG ∈ R
(N+1,N+2)

[18] for the N -point grid can be written as:

Gi = 1

h

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−352
105

35
8

−35
24

21
40

−5
56 0

16
105

−31
24

29
24

−3
40

1
168 0

0 1
24

−9
8

9
8

−1
24 0

...
...

...
. . .

. . .
. . .

...
...

...

. 0 1
24

−9
8

9
8

−1
24 0 . . .

. 0 −1
168

3
40

−29
24

31
24

−16
105

. 0 5
56

−21
40

35
24

−35
8

352
105

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

(31)

By examining the first row of Gi, one can identify Gi[0] =
− 352

105 and thenon-zero components ofG
†
i =

[
35
8 , −35

24 , 21
40 ,

−5
56

]
.

Acknowledgements This work was supported by the sponsors of the
Consortium Project on Seismic Inverse Methods for Complex Struc-
tures at the Center for Wave Phenomena at Colorado School of Mines.
The spectral-element solutions are computed using the SpecFEM3D
package (https://github.com/geodynamics/specfem3d). We would like
to thankNVIDIA for providing the computational resources for running
the weak-scaling tests.

Funding This research was sponsored by the Center forWave Phenom-
ena research consortium at Colorado School of Mines.

Code availability The code will be available via NVIDIA Energy SDK
(https://github.com/NVIDIA/energy-sdk/mimeticfd) once published.

Declarations

Competing interests The authors have no competing interests to
declare that are relevant to the content of this article.

References

1. De Basabe, J.D., Sen, M.K.: A comparison of finite-difference and
spectral-element methods for elastic wave propagation in media
with a fluid-solid interface.Geophys. J. Int.200(1), 278–298 (2014)

2. Foltinek, D., Eaton, D., Mahovsky, J., Moghaddam, P., McGarry,
R.: Industrial-scale reverse time migration on GPU hardware. In:
SEGTechnical ProgramExpandedAbstracts 2009, pp. 2789–2793.
Society of Exploration Geophysicists, Tulsa (2009)

3. Komatitsch, D., Erlebacher, G., Göddeke, D., Michéa, D.: High-
order finite-element seismic wave propagation modeling with MPI
on a large GPU cluster. J. Comput. Phys. 229(20), 7692–7714
(2010)

4. Mu, D., Chen, P., Wang, L.: Accelerating the discontinuous
Galerkin method for seismic wave propagation simulations using
the graphic processing unit (GPU)–single-GPU implementation.
Comput. Geosci. 51, 282–292 (2013)

5. Micikevicius, P.: 3DFiniteDifferenceComputation onGPUs using
CUDA. In: Proceedings of 2nd workshop on general purpose pro-
cessing on graphics processing units, pp. 79–84. (2009)

6. Abdelkhalek, R., Calandra, H., Coulaud, O., Roman, J., Latu, G.:
Fast seismicmodeling and reverse timemigration on aGPUcluster.
In: 2009 International Conference on High Performance Comput-
ing & Simulation, pp. 36–43. IEEE (2009)

7. Nakata, N., Tsuji, T., Matsuoka, T.: Acceleration of computation
speed for elastic wave simulation using a graphic processing unit.
Explor. Geophys. 42(1), 98–104 (2011)

8. Weiss,R.M., Shragge, J.: Solving 3Danisotropic elasticwave equa-
tions on parallel GPU devices. Geophysics 78, F7–F15 (2013)

9. Rubio, F., Hanzich, M., Farrés, A., de la Puente, J., Cela, J.M.:
Finite-difference staggered grids in GPUs for anisotropic elastic
wave propagation simulation.Comput.Geosci. 70, 181–189 (2014)

10. Sethi, H., Shragge, J., Tsvankin, I.: Mimetic finite-difference
coupled-domain solver for anisotropicmedia.Geophysics86, T45–
T59 (2021)

11. Castillo, J.E., Miranda, G.F.: Mimetic Discretization Methods.
Chapman and Hall/CRC, London (2013)

12. de la Puente, J., Ferrer, M., Hanzich, M., Castillo, J.E., Cela,
J.M.: Mimetic seismic wave modeling including topography on
deformed staggered grids. Geophysics 79(3), T125–T141 (2014)

13. Otero, B., Francés, J., Rodriguez, R., Rojas, O., Solano, F.,
Guevara-Jordan, J.: A performance analysis of a mimetic finite dif-
ference scheme for acoustic wave propagation on GPU platforms.
Concurr. Comput. Pract. Experience 29(4), e3880 (2017)

14. Tsvankin, I.: Seismic signatures and analysis of reflection data in
anisotropic media, 3rd edn. Society of Exploration Geophysicists,
Tulsa (2012)

15. Sun, Y.C., Zhang, W., Xu, J.K., Chen, X.: Numerical simulation
of 2-D seismic wave propagation in the presence of a topographic
fluid-solid interface at the sea bottom by the curvilinear grid finite-
difference method. Geophys. J. Int. 210(3), 1721–1738 (2017)

16. Castillo, J.E., Grone, R.: A matrix analysis approach to higher-
order approximations for divergence and gradients satisfying a
global conservation law. SIAM J. Matrix Anal. Appl. 25(1),
128–142 (2003)

123

https://github.com/geodynamics/specfem3d
https://github.com/NVIDIA/energy-sdk/mimeticfd

804 Computational Geosciences (2023) 27:793–804

17. Rojas, O.: Mimetic finite difference modeling of 2D elastic P-SV
wave propagation. Qualifying examination report, Computational
Science Research Center, San Diego State University (2007)

18. Corbino, J., Castillo, J.: Computational Science & Engineering.
San Diego State University, San Diego (2017)

19. Shragge, J., Tapley, B.: Solving the tensorial 3D acoustic wave
equation: Amimetic finite-difference time-domain approach. Geo-
physics 82(4), T183–T196 (2017)

20. Lisitsa,V.,Vishnevskiy,D.: Lebedev scheme for the numerical sim-
ulation of wave propagation in 3D anisotropic elasticity. Geophys.
Prospect. 58(4), 619–635 (2010)

21. Roden, J.A., Gedney, S.D.: Convolution PML (CPML): An effi-
cient FDTD implementation of the CFS-PML for arbitrary media.
Microw. Opt. Technol. Lett. 27(5), 334–339 (2000)

22. Martin, R., Komatitsch, D.: An unsplit convolutional perfectly
matched layer technique improved at grazing incidence for the vis-
coelastic wave equation. Geophys. J. Int. 179(1), 333–344 (2009)

23. Tsvankin, I.: Anisotropic parameters and P-wave velocity for
orthorhombic media. Geophysics 62(4), 1292–1309 (1997)

24. Komatitsch, D., Tromp, J.: Introduction to the spectral element
method for three-dimensional seismicwave propagation. Geophys.

J. Int. 139(3), 806–822 (1999)
25. Shragge, J., Bourget, J., Lumley, D., Giraud, J., Wilson, T., Iqbal,

A., Emami Niri, M., Whitney, B., Potter, T., Miyoshi, T., Witten,
B.: The Western Australia Modeling Project. Part 1: Geomodel
Building. Interpretation 7(4), T773–T791 (2019a)

26. Shragge, J., Lumley, D., Bourget, J., Potter, T., Miyoshi, T.,Witten,
B., Giraud, J., Wilson, T., Iqbal, A., Emami Niri, M.: The Western
Australia Modeling Project. Part 2: Seismic Validation. Interpreta-
tion 7(4), T793–T807 (2019b)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

	Modeling 3-D anisotropic elastodynamics using mimetic finite differences and fully staggered grids
	Abstract
	1 Introduction
	2 Elastodynamics theory
	3 3-D MFD+FSG approach
	3.1 Stress-field updating
	3.2 Velocity-field updating
	3.3 Free-surface implementation
	3.4 Absorbing boundary conditions
	3.5 Source injection and wavefield extraction

	4 GPU Implementation
	5 Numerical examples
	6 Performance analysis
	7 Discussion
	8 Conclusions
	Appendix A - MFD operators
	Acknowledgements
	References

