L03: Functional Programming in Lisp (Pre Lecture)

Dr. Neil T. Dantam

CSCI-561, Colorado School of Mines

Fall 2025

COLORADO SCHOOL OF

MINES

Alan Perlis on Programming Languages
https://doi.org/10.1145%2F947955.1083808

“A language that doesn't affect
the way you think about programming
is not worth knowing."

Alan J. Perlis (1922-1990)
First Turing Award Recipient, 1966

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 2/50

https://doi.org/10.1145%2F947955.1083808

Eric Raymond and Paul Graham on Lisp

Lisp is worth learning for a different reason— By induction, the only programmers in a position to see
the profound enlightenment experience you will have all the differences in power between the various languages
when you finally get it. That experience will make are those who understand the most powerful one.

you a better programmer for the rest of your days, (This is probably what Eric Raymond meant about

even if you never actually use Lisp itself a lot. Lisp making you a better programmer.)

—Eric Raymond —Paul Graham

http://www.catb.org/esr/fags/hacker-howto.html http://www.paulgraham.com/avg.html

3/50

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

http://www.catb.org/esr/faqs/hacker-howto.html
http://www.paulgraham.com/avg.html

Peter Siebel on Lisp, “Blub,” and "Omega”

https://youtu.be/4N083wZVTOA?t=18m26s

Practical

Common Lisp

Peter Seibel

Apress®

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 4 /50

https://youtu.be/4NO83wZVT0A?t=18m26s
http://www.gigamonkeys.com/book/

Introduction

» Persistence: variables and data structures are » Review/understand concepts of
immutable (constant) functional programming

» Recursion: construct algorithms as recursive » Implement Lisp programs in
functions (vs. loops) functional style

» First-class functions: can be passed to and
returned from other functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 5/50

Trade-offs of Functional Programming

» Easy (comparatively) to reason about » Different way of thinking about
(prove) correctness programs (also a prol)

» Compact (fewer LoC) » Sometimes less (constant-factor)
efficient

» Immutable structures shared between
modules, threads, etc.

Well-aligned with the algorithms and proofs in this course.

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 6 /50

Outline

Recursion

First-Class Functions

Higher-order Functions

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 7 /50

Recursion

Outline

Recursion

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 8 /50

Recursion

Definition: Recursion

Review

A function or other object defined in terms of itself.
Base Case: Terminating condition ol — {1 ifn=0

Recursive Case: Reduction towards the base case nx(n—1)! ifn#0

Function fact(n)

1 if 0 = n then return 1 ;
2 else return nx fact(n—1);

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 9/50

Recursion

Example: Factorial

Procedure fact(x) (defun fact (n)
1 if 0 = x then /* Base Case */ (if (=n 0)
2 | return 1; 1
3 else /* Recursive Case */ (x n
4 Lreturnx*fact(x—l); (fact (= n 1)))))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Exercise 1: Recursive Fibonacci Sequence

(1, 1,2, 3, 5 8, 13, 21, 34, 55,...)
1 itn=0
fib(n) =41 ifn=1
fib(n—1)+fib(n—2) ifn>2

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 11 /50

Recursion

Exercise 1: Recursive Fibonacci Sequence

continued

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 12 /50

Recursion

Example: Recursive Accumulate in Lisp

Function accum(S) (defun accum (list)
1 if S then // Recursive Case (if list
2 return ,, recursive case
car(S) + accum (cdr (S)); (+ (car list)
3 else // Base Case (accum (cdr list)))
4 I_ return O; ;; base case
0))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Example: Recursive Accumulate Execution Trace

(accumulate (1 2 3))
(defun accum (list) (+ 1 (accumulate ’(2 3)))
(if list §
(+ (riaC:JrIsil\s/te)case (+ 1 (+ 2 (accumulate ’(3))))

(accum (cdr list))) é

;; base case (+ 1 (+ 2 (+ 3 (accumulate nil))))

0)) §

+1 (+2H30)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Example: Alternate Recursive Accumulate

(defun accum (list) (defun accum (list)
(if list (labels ((rec (list accum)
recursive case (if list
(+ (car list) ;; recursive case
(accum (cdr list))) (rec (cdr list)
base case (+ (car list)
0)) accum))
base case
accum)))
(rec list 0)))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Example: Alternate Accumulate Execution Trace

(defun accum (list)
(labels ((rec (list accum)
(if list
,; recursive case
(rec (cdr list)
(+ (car list)

(accumulate °(1 2 3))

S

(rec (1 2 3) 0)

<

(rec (2 3) 1)

S

accum))
;; base case (rec 7(3) 3)
accum))) §
(rec list 0)))
(rec >() 6)
Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Exercise 2: Recursive Reverse

reverse
~

(ap a1 ... an—1 an)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture)

(an an-1 ...

Fall 2025

Recursion

DESTRUCTURING-BIND

DESTRUCTURING-BIND bind variables to corresponding values draw from a list. I

(destructuring—bind (a b c) (destructuring—bind (op el e2)
‘(1 2 3) "(+ 1 2)
(list ¢ b a)) (+ el e2))
(321) 3

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Recursion

Example: destructuring-bind
Return S-Expression as infix string

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 19 /50

Recursion

Exercise 3: destructuring-bind
Evaluate Arithmetic S-Expression

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 20 /50

First-Class Functions

Outline

First-Class Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

First-class functions

A programming language has first-class functions when it treats
functions like any other variable or object. First-class functions can be:

» Bind variables to the function

» Passed as arguments to other functions

» Returned as the result of other functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

Function Closure

A function closure or lexical closure is a function and an associated set of variable
definitions. Etymology: from “closed expression.”

/* Definition x/ // Definition
struct context { class Adder {

int val; public int a;
bE public Adder(int a_) {

a=a_;

int adder(struct context *cx, int x) {

return cx—>a + x; public int call(int x) {
3 return x+a;

3

/* Usage */ }
struct context c;
c.val = 1; // Usage
int y = adder(c,2); Adder A = new Adder(1);

int y =A.call(2);
Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

Closures in Lisp: Local Functions

Defines local functions and executes body using those local functions:

(labels ((FUNCTION-NAME VARIABLES FUNCTION-BODY)...) LABELS-BODY)

(let ((a 1))
(labels ((adder (x)

(+ x a)))
(adder 2)))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

Closures in Lisp: Anonymous Functions

Defines an anonymous function: Apply a function to the provided arguments:
(lambda VARIABLES FUNCTION-BODY) (funcall FUNCTION ARGUMENTS...)
(let ((a 1))
(funcall (lambda (x)
(+ x a))

2))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

Value and Function Namespaces

» Records values (defun foo (x) (+ 1 x))
» Local: let, let*

(let ((foo 10))
(print foo) ;= 10
(print (foo 1)) ;= 2
(print (foo foo))) , => 11

» Global: defparameter

» Records function definitions n
» Local: labels, flet 9
» Global: defun 11

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

First-Class Functions

function and funcall

Returns the functional value of a name:

(function NAME)
The function bound to name

ad

> (function +)
> (#’ +)
» (defun foo (x) (+ 1 x))
#’foo
» (labels ((foo (x) (+ 1 x)))
#°fo00)

Dantam (Mines CSCI-561)

L03: Functional Programming in Lisp (Pre Lecture)

Apply a function to the provided
arguments:

(funcall FUNCTION ARGS..)
Return value of FUNCTION
called on ARGS.. ..

» (funcall (lambda (x)

A

(+ 1 x))
1)
~ 2
» (funcall #°+ 1 2) ~ 3
Fall 2025

Higher-order Functions

Outline

Higher-order Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Higher-order functions

A function that takes another function as an argument or returns
another function as its result.

Function f(g,a) Function f(a) Function f(a,b)

1 return g(42, a); 1 function g(b) is 1 return a + b;
2 |_ return a + b;

3 return g;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Sorting

sorted (["a", "ccc", "bb"], key=len)
#= ['a’, 'bb’', 'ccc’]

void gsort(void xbase, size t nmemb, size t size,
int (xcmp)(const void xa, const void *b));
void gsort r(void xbase, size t nmemb, size t size,
int (xcmp)(const void *a, const void x*b,
void *cx),

void *cx);

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Sorting in Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Exercise 4: Sorting in Lisp

Call SORT to sort the following list in numerically descending order:
(14 63 8 11 51 24 71 89 17 42)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Common Higher-order Functions

map transform elements of a collection

fold combine elements of a collection

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture)

Fall 2025

33/50

Higher-order Functions

Map function

Apply a function to every member of an input sequence, and collect the results
into the output sequence.

map : (X—Y) x X" — Y”
R , ~—~ ~—~
F e input sequence output sequence

output sequence
-

input sequence MAP Ef(XO) f(x1) ... f(xn-1))

(Xo X1 ... Xn—l)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Example: Map

Ax.x+1

(123)

Higher-order Functions

MAP (1+12+13+1)—— (234)

(TLT)

(-T =L =T) —> (L T 1)

Dantam (Mines CSCI-561)

L03: Functional Programming in Lisp (Pre Lecture)

Fall 2025

Higher-order Functions

Algorithm: Map function

Procedure map(f,s) Procedure map(f,s)

1 if empty(s) then /* s is empty */ 1 n < length(s);

2 | return NIL Y < make-sequence(n);
3 else /x s has members */
4 |_ return cons (f(first (s)), map(f,rest(s));

N

i < 0;
while / < n do

L Y[i] < f(s[i]);

I i+1;

N o g0 &AW

return Y;

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 36 /50

Higher-order Functions

Example: Map
(lambda (x)
(+x1))
MAP (234)
(123)
(map 'list ; result type
(lambda (x) (+ 1 x)) ,; function
(list 1 2 3)) ; sequence
;; RESULT: (2 3 4)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Fold-left

Apply a binary function to each member of a sequence and the prior
result, starting from the left.

fold-left : (Y x X > ¥)x ¥ x X" Y
N A S o —~—

function init. sequence result

'
y RS Xn
(XO X1.. .Xn_]_) ce

AR
y X0

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Fold-left

0 @ . —6

(123) 0 1

&
=il
0 o S, —-

7N
(123) 0 1

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Algorithm: Fold-left

Function fold-left(f, y, X) Procedure fold-left(f, y, X)
1 if empty (X) then return y; 1/« 0;
2 else 2 while i < | X| do
3 | let ¥y« f(y,first(X))in 3 |y« fy,X);
4 return 4 I i+1;
/ D
fold-left (f, y/, rest(X)); 5 return y:

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Fold-left in Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Fold-Left Accumulate

Procedure accum-fold(L) (defun accum—fold (list)
1 function h(a, x) is (reduce (lambda (accum x)
2 |_return a+ x; (+ x accum))
list
3 fold-left(h,0,L); o
return 10 |) cinitial—value 0))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Exercise 5: Fold-Left Reverse

regEe (an an—1 ... a1 ao)

(ap a1 ... an—1 an)

MINES

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 43 /50

Higher-order Functions

Fold-right

Apply a binary function to each member of a sequence and the prior
result, starting from the right.

fold-right : (X x Y= Y)x Y x X" — Y
—_—— ~— N~ ~—
function init. sequence result

f
y DN
(Xo 24l oo o Xn_1) 1

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Fold-right

+ 5
Vi AN
0 FOLD-RIGHT 1 5 G
Vi AN
(123) 2
3

7N
0

N /@_1
; 1 G —o
(123) =)

2
7N
3 0

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Algorithm: Fold-right

Function fold-right(f, y, X) Procedure fold-right(f, y, X)
1 if empty (X) then return y; 17+ |X|-1,
2 else 2 while / > 0 do
3 let y' < fold-right (f,y,rest(X))in 3 | y+« f(Xi,y);
4 I_ return f (first (X), y/); 4 i< i—1;
5 return y;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Higher-order Functions

Example: Fold-right in Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

Application: MapReduce

Higher-order Functions

User
Program

Function MapReduce(f,g,X)

) fork -~ . (1) fork

(1)iforl

1 Y < parallel-map(f, X);
2 return reduce(g, Y);

.

@, v
assign assign
i inap reduce

@ 0.,

> |dea:
> (parallel) map
» (serial) reduce/fold
» Provides scalability,
fault-tolerance
» Implementations:
» Google MapReduce
» Apache Hadoop

Dantam (Mines CSCI-561)

split2

oo]

[spit 1| # ocalwite
B Corier)
output
file 1
Output

files.

Intermediate files Reduce

Map

Input
phasr phase

files (on local disks)

Jeffrey Dean and Sanjay Ghemawat.
MapReduce: Simplified Data Processing on Large

Clusters. Communications of the ACM. 2008.

L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

MINES

Higher-order Functions

Summary

» Functional Style:

» Avoid side-effects (assignment), often recursive
» Aligns with inductive proofs

» S-Expressions:

» Abstract representation of mathematical expressions
» Thinking about expression structure, not syntax

» Homoiconicity:

» Same structure for code and data

» Process code just like any other data structure
» Applications in symbolic reasoning:

» Computer Algebra Systems (CAS)
» (Robot) Planning and Scheduling

Maxima TI-89
CAS (Derive CAS)

Mars Pathflnder planner

Learn to think and program functionally and symbolically. &)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture)

MINES

Fall 2025 49 /50

https://franz.com/success/customer_apps/scheduling/nasa.app.pdf

Higher-order Functions

Dijkstra on Lisp

“LISP has jokingly been described as ‘the most intelligent way to misuse a computer’. |
think that description a great compliment because it transmits the full flavour of libera-
tion: it has assisted a number of our most gifted fellow humans in thinking previously
impossible thoughts.” [emphasis added)]

https://www.cs.utexas.edu/ EWD/transcriptions/EWD03xx/EWD340.html

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

	Recursion
	First-Class Functions
	Higher-order Functions

