
L03: Functional Programming in Lisp (Pre Lecture)

Dr. Neil T. Dantam

CSCI-561, Colorado School of Mines

Fall 2025

Alan Perlis on Programming Languages
https://doi.org/10.1145%2F947955.1083808

“A language that doesn’t affect

the way you think about programming

is not worth knowing.”

Alan J. Perlis (1922-1990)
First Turing Award Recipient, 1966

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 2 / 50

https://doi.org/10.1145%2F947955.1083808

Eric Raymond and Paul Graham on Lisp

Lisp is worth learning for a different reason—
the profound enlightenment experience you will have
when you finally get it. That experience will make
you a better programmer for the rest of your days,
even if you never actually use Lisp itself a lot.
–Eric Raymond
http://www.catb.org/esr/faqs/hacker-howto.html

By induction, the only programmers in a position to see
all the differences in power between the various languages
are those who understand the most powerful one.
(This is probably what Eric Raymond meant about
Lisp making you a better programmer.)
–Paul Graham
http://www.paulgraham.com/avg.html

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 3 / 50

http://www.catb.org/esr/faqs/hacker-howto.html
http://www.paulgraham.com/avg.html

Peter Siebel on Lisp, “Blub,” and “Omega”
https://youtu.be/4NO83wZVT0A?t=18m26s

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 4 / 50

https://youtu.be/4NO83wZVT0A?t=18m26s
http://www.gigamonkeys.com/book/

Introduction

Functional Programming Features

▶ Persistence: variables and data structures are
immutable (constant)

▶ Recursion: construct algorithms as recursive
functions (vs. loops)

▶ First-class functions: can be passed to and
returned from other functions

Outcomes
▶ Review/understand concepts of

functional programming

▶ Implement Lisp programs in
functional style

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 5 / 50

Trade-offs of Functional Programming

Pros
▶ Easy (comparatively) to reason about

(prove) correctness

▶ Compact (fewer LoC)

▶ Immutable structures shared between
modules, threads, etc.

Cons
▶ Different way of thinking about

programs (also a pro!)

▶ Sometimes less (constant-factor)
efficient

Well-aligned with the algorithms and proofs in this course.

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 6 / 50

Outline

Recursion

First-Class Functions

Higher-order Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 7 / 50

Recursion

Outline

Recursion

First-Class Functions

Higher-order Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 8 / 50

Recursion

Definition: Recursion
Review

Definition (Recursion)

A function or other object defined in terms of itself.

Base Case: Terminating condition

Recursive Case: Reduction towards the base case

Example (Factorial)

n! =

{

1 if n = 0

n ∗ (n − 1)! if n ̸= 0

Function fact(n)

1 if 0 = n then return 1 ;
2 else return n ∗ fact(n − 1) ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 9 / 50

Recursion

Example: Factorial

“Math”

n! =

{

1 if n = 0

n ∗ (n − 1)! if n ̸= 0

Pseudocode

Procedure fact(x)

1 if 0 = x then /* Base Case */

2 return 1;
3 else /* Recursive Case */

4 return x ∗ fact(x − 1);

Common Lisp

(defun f a c t (n)
(i f (= n 0)

1
(∗ n

(f a c t (− n 1)))))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 10 / 50

Recursion

Exercise 1: Recursive Fibonacci Sequence

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .)

fib(n) =











1 if n = 0

1 if n = 1

fib(n − 1) + fib(n − 2) if n g 2

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 11 / 50

Recursion

Exercise 1: Recursive Fibonacci Sequence
continued

Pseudocode

Procedure fib(x)

Common Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 12 / 50

Recursion

Example: Recursive Accumulate in Lisp

Pseudocode

Function accum(S)

1 if S then // Recursive Case

2 return

car(S) + accum (cdr (S));

3 else // Base Case

4 return 0;

Recursive Accumulate in Lisp

(defun accum (l i s t)
(i f l i s t

; ; r e c u r s i v e ca s e
(+ (ca r l i s t)

(accum (cd r l i s t)))
; ; base ca s e
0))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 13 / 50

Recursion

Example: Recursive Accumulate Execution Trace

Recursive Accumulate in Lisp

(defun accum (l i s t)
(i f l i s t

; ; r e c u r s i v e ca s e
(+ (ca r l i s t)

(accum (cd r l i s t)))
; ; base ca s e
0))

(accumulate ’(1 2 3))

(+ 1 (accumulate ’(2 3)))

(+ 1 (+ 2 (accumulate ’(3))))

(+ 1 (+ 2 (+ 3 (accumulate nil))))

(+ 1 (+ 2 (+ 3 0)))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 14 / 50

Recursion

Example: Alternate Recursive Accumulate

Accumulate

(defun accum (l i s t)
(i f l i s t

; ; r e c u r s i v e ca s e
(+ (ca r l i s t)

(accum (cd r l i s t)))
; ; base ca s e
0))

Alternate Accumulate

(defun accum (l i s t)
(l a b e l s ((r e c (l i s t accum)

(i f l i s t

; ; r e c u r s i v e ca s e
(r e c (cd r l i s t)

(+ (ca r l i s t)
accum))

; ; base ca s e
accum)))

(r e c l i s t 0)))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 15 / 50

Recursion

Example: Alternate Accumulate Execution Trace

Alternate Accumulate

(defun accum (l i s t)
(l a b e l s ((r e c (l i s t accum)

(i f l i s t

; ; r e c u r s i v e ca s e
(r e c (cd r l i s t)

(+ (ca r l i s t)
accum))

; ; base ca s e
accum)))

(r e c l i s t 0)))

(accumulate ’(1 2 3))

(rec ’(1 2 3) 0)

(rec ’(2 3) 1)

(rec ’(3) 3)

(rec ’() 6)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 16 / 50

Recursion

Exercise 2: Recursive Reverse

(a0 a1 . . . an−1 an)
reverse

⇝ (an an−1 . . . a1 a0)

Pseudocode

Procedure reverse(L)

Common Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 17 / 50

Recursion

DESTRUCTURING-BIND

DESTRUCTURING-BIND

DESTRUCTURING-BIND bind variables to corresponding values draw from a list.

Example

(d e s t r u c t u r i n g−b i n d (a b c)
’ (1 2 3)

(l i s t c b a))

Output

(3 2 1)

Example

(d e s t r u c t u r i n g−b i n d (op e1 e2)
’(+ 1 2)

(+ e1 e2))

Output

3

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 18 / 50

Recursion

Example: destructuring-bind
Return S-Expression as infix string

Code

(defun a r i t h− s t r i n g (e)
"Return s−exp E as an i n f i x s t r i n g . "
(i f (l i s t p e)

(d e s t r u c t u r i n g−b i n d (op e1 e2)
e

(format n i l "(~A) ~A (~A) "
(a r i t h− s t r i n g e1)
op
(a r i t h− s t r i n g e2)))

(format n i l "~A" e)))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 19 / 50

Recursion

Exercise 3: destructuring-bind
Evaluate Arithmetic S-Expression

Code

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 20 / 50

First-Class Functions

Outline

Recursion

First-Class Functions

Higher-order Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 21 / 50

First-Class Functions

First-class functions

Definition: First-class functions

A programming language has first-class functions when it treats
functions like any other variable or object. First-class functions can be:

▶ Bind variables to the function

▶ Passed as arguments to other functions

▶ Returned as the result of other functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 22 / 50

First-Class Functions

Function Closure

Definition (Function Closure)

A function closure or lexical closure is a function and an associated set of variable
definitions. Etymology: from “closed expression.”

Example (C Function Pointer)
/∗ D e f i n i t i o n ∗/
s t ruct con t e x t {

i n t v a l ;
} ;

i n t adder (s t ruct con t e x t ∗cx , i n t x) {
return cx−>a + x ;

}

/∗ Usage ∗/
s t ruct con t e x t c ;
c . v a l = 1 ;
i n t y = adder (c , 2) ;

Example (Java Class)
// D e f i n i t i o n
c l a s s Adder {

p u b l i c i n t a ;
p u b l i c Adder (i n t a_) {

a = a_ ;
}
p u b l i c i n t c a l l (i n t x) {

return x+a ;
}

}

// Usage
Adder A = new Adder (1) ;
i n t y = A. c a l l (2) ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 23 / 50

First-Class Functions

Closures in Lisp: Local Functions

LABELS

Defines local functions and executes body using those local functions:

(labels ((FUNCTION-NAME VARIABLES FUNCTION-BODY)...) LABELS-BODY)

Example

(l e t ((a 1))
(l a b e l s ((adder (x)

(+ x a)))
(adder 2)))

Output

3

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 24 / 50

First-Class Functions

Closures in Lisp: Anonymous Functions

LAMBDA

Defines an anonymous function:

(lambda VARIABLES FUNCTION-BODY)

FUNCALL

Apply a function to the provided arguments:

(funcall FUNCTION ARGUMENTS...)

Example

(l e t ((a 1))
(f unca l l (lambda (x)

(+ x a))
2))

Output

3

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 25 / 50

First-Class Functions

Value and Function Namespaces

Value Namespace

▶ Records values

▶ Local: let, let*

▶ Global: defparameter

Function Namespace

▶ Records function definitions

▶ Local: labels, flet

▶ Global: defun

Example

(defun f oo (x) (+ 1 x))

(l e t ((foo 10))
(pr in t f oo) ; => 10
(pr in t (foo 1)) ; => 2
(pr in t (foo foo))) ; => 11

Output

10

2

11

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 26 / 50

First-Class Functions

function and funcall

FUNCTION

Returns the functional value of a name:

(function NAME)
⇝ The function bound to name

Example

▶ (function +)

▶ (#’ +)

▶ (defun foo (x) (+ 1 x))

#’foo

▶ (labels ((foo (x) (+ 1 x)))

#’foo)

FUNCALL

Apply a function to the provided
arguments:

(funcall FUNCTION ARGS . . .)
⇝ Return value of FUNCTION

called on ARGS

Example

▶ (funcall (lambda (x)

(+ 1 x))

1)

⇝ 2

▶ (funcall #’+ 1 2) ⇝ 3

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 27 / 50

Higher-order Functions

Outline

Recursion

First-Class Functions

Higher-order Functions

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 28 / 50

Higher-order Functions

Higher-order functions

Definition: Higher-order function

A function that takes another function as an argument or returns
another function as its result.

Example (Passing)

Function f(g,a)

1 return g(42, a);

Example (Returning)

Function f(a)

1 function g(b) is

2 return a+ b;

3 return g ;

Counterexample

Function f(a,b)

1 return a+ b;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 29 / 50

Higher-order Functions

Example: Sorting

Example (sorted() in Python)

sorted (["a" , " ccc " , "bb"] , key=l en)
=> [’ a ’ , ’ bb ’ , ’ ccc ’]

Example (qsort() in libc)

void q s o r t (void ∗base , s i z e_t nmemb , s i z e_t s i z e ,
i n t (∗cmp) (const void ∗a , const void ∗b)) ;

void qso r t_r (void ∗base , s i z e_t nmemb , s i z e_t s i z e ,
i n t (∗cmp) (const void ∗a , const void ∗b ,

void ∗ cx) ,
void ∗ cx) ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 30 / 50

Higher-order Functions

Example: Sorting in Lisp

Example (Predicate)

(sor t ’ ("a" " ccc " "bb")
(lambda (a b)

(< (length a)
(length b))))

; ; => "a" "bb" " ccc "

Example (Predicate and Key)

(sor t ’ ("a" " ccc " "bb")
#’< : key #’ length)

; ; => "a" "bb" " ccc "

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 31 / 50

Higher-order Functions

Exercise 4: Sorting in Lisp

Call SORT to sort the following list in numerically descending order:
(14 63 8 11 51 24 71 89 17 42)

Sort

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 32 / 50

Higher-order Functions

Common Higher-order Functions

map transform elements of a collection

fold combine elements of a collection

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 33 / 50

Higher-order Functions

Map function

Definition (map)

Apply a function to every member of an input sequence, and collect the results
into the output sequence.

map : (X 7→ Y)
︸ ︷︷ ︸

function

× X
n

︸︷︷︸

input sequence

7→ Y
n

︸︷︷︸

output sequence

Illustration

MAP

f

input sequence
︷ ︸︸ ︷

(x0 x1 . . . xn−1)

output sequence
︷ ︸︸ ︷

(f (x0) f (x1) . . . f (xn−1))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 34 / 50

Higher-order Functions

Example: Map

Increment every element by one

MAP

λx . x + 1

(1 2 3)

(1 + 1 2 + 1 3 + 1) (2 3 4)

Not (¬) every element

MAP

¬

(¦ § ¦)

(¬¦ ¬§ ¬¦) (§ ¦ §)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 35 / 50

Higher-order Functions

Algorithm: Map function

Functional Map

Procedure map(f,s)

1 if empty(s) then /* s is empty */

2 return NIL

3 else /* s has members */

4 return cons (f (first (s)), map(f , rest (s));

Imperative Map

Procedure map(f,s)

1 n← length(s);
2 Y ← make-sequence(n);

3 i ← 0;
4 while i < n do

5 Y [i]← f (s[i]);
6 i ← i + 1;

7 return Y ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 36 / 50

Higher-order Functions

Example: Map

Example (Illustration)

MAP

(lambda (x)

(+ x 1))

(1 2 3)

(2 3 4)

Example (Common Lisp)

(map ’ l i s t ; r e s u l t t ype
(lambda (x) (+ 1 x)) ; f u n c t i o n
(l i s t 1 2 3)) ; s equence

; ; RESULT : (2 3 4)

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 37 / 50

Higher-order Functions

Fold-left

Definition (fold-left)

Apply a binary function to each member of a sequence and the prior
result, starting from the left.

fold-left : (Y× X 7→ Y)
︸ ︷︷ ︸

function

× Y
︸︷︷︸

init.

× X
n

︸︷︷︸

sequence

7→ Y
︸︷︷︸

result

Illustration

FOLD-LEFT

f

y

(x0 x1. . .xn−1)

f

. . .

f

y x0

. . .

xn

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 38 / 50

Higher-order Functions

Example: Fold-left
Example (Addition)

FOLD-LEFT

+

0

(1 2 3)

+

+

+

0 1

1

2

3

3

6

Example (Subtraction)

FOLD-LEFT

−

0

(1 2 3)

−

−

−

0 1

−1

2

−3

3

−6

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 39 / 50

Higher-order Functions

Algorithm: Fold-left

Functional

Function fold-left(f , y , X)

1 if empty(X) then return y ;
2 else

3 let y ′ ← f (y , first (X)) in

4 return

fold-left (f , y ′, rest (X));

Imperative

Procedure fold-left(f , y , X)

1 i ← 0;
2 while i < |X | do

3 y ← f (y ,X);
4 i ← i + 1;

5 return y ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 40 / 50

Higher-order Functions

Example: Fold-left in Lisp

Example (Addition)

(reduce #’+
’(1 2 3)
: i n i t i a l − v a l u e 0)

; ; ; => (+ (+ (+ 0 1) 2) 3)
; ; ; => 6

Example (Subtraction)

(reduce #’−
’ (1 2 3)
: i n i t i a l − v a l u e 0)

; ; ; => (− (− (− 0 1) 2) 3)
; ; ; => −6

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 41 / 50

Higher-order Functions

Example: Fold-Left Accumulate

Pseudocode

Procedure accum-fold(L)

1 function h(a, x) is

2 return a+ x ;

3 return fold-left(h, 0, L);

Lisp

(defun accum−fold (l i s t)
(reduce (lambda (accum x)

(+ x accum))
l i s t

: i n i t i a l − v a l u e 0))

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 42 / 50

Higher-order Functions

Exercise 5: Fold-Left Reverse

(a0 a1 . . . an−1 an)
reverse
⇝ (an an−1 . . . a1 a0)

Pseudocode

Procedure reverse(L)

Common Lisp

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 43 / 50

Higher-order Functions

Fold-right

Definition (fold-right)

Apply a binary function to each member of a sequence and the prior
result, starting from the right.

fold-right : (X× Y 7→ Y)
︸ ︷︷ ︸

function

× Y
︸︷︷︸

init.

× X
n

︸︷︷︸

sequence

7→ Y
︸︷︷︸

result

Illustration

FOLD-RIGHT

f

y

(x0 x1 . . . xn−1)

f

x0
. . .

. . . f

xn−1 y

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 44 / 50

Higher-order Functions

Example: Fold-right
Example (Addition)

FOLD-RIGHT

+

0

(1 2 3)

+

1 +

2 +

3 0

3

5

6

Example (Subtraction)

FOLD-RIGHT

−

0

(1 2 3)

−

1 −

2 −

3 0

3

−1

2

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 45 / 50

Higher-order Functions

Algorithm: Fold-right

Recursive

Function fold-right(f , y , X)

1 if empty(X) then return y ;
2 else

3 let y ′ ← fold-right (f , y , rest (X)) in

4 return f (first (X) , y ′);

Procedural

Procedure fold-right(f , y ,X)

1 i ← |X | − 1;
2 while i g 0 do

3 y ← f (Xi , y) ;
4 i ← i − 1 ;

5 return y ;

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 46 / 50

Higher-order Functions

Example: Fold-right in Lisp

Example (Addition)

(reduce #’+
’(1 2 3)
: i n i t i a l − v a l u e 0
: from−end t)

; ; ; => (+ 1 (+ 2 (+ 3 0)))
; ; ; => 6

Example (Subtraction)

(reduce #’−
’ (1 2 3)
: i n i t i a l − v a l u e 0
: from−end t)

; ; ; => (− 1 (− 2 (− 3 0)))
; ; ; => 2

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 47 / 50

Higher-order Functions

Application: MapReduce

Function MapReduce(f,g,X)

1 Y ← parallel-map(f ,X);
2 return reduce(g ,Y);

▶ Idea:
▶ (parallel) map
▶ (serial) reduce/fold

▶ Provides scalability,
fault-tolerance

▶ Implementations:
▶ Google MapReduce
▶ Apache Hadoop

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Jeffrey Dean and Sanjay Ghemawat.

MapReduce: Simplified Data Processing on Large

Clusters. Communications of the ACM. 2008.

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 48 / 50

Higher-order Functions

Summary

▶ Functional Style:
▶ Avoid side-effects (assignment), often recursive
▶ Aligns with inductive proofs

▶ S-Expressions:
▶ Abstract representation of mathematical expressions
▶ Thinking about expression structure, not syntax

▶ Homoiconicity:
▶ Same structure for code and data
▶ Process code just like any other data structure

▶ Applications in symbolic reasoning:
▶ Computer Algebra Systems (CAS)
▶ (Robot) Planning and Scheduling

Maxima
CAS

TI-89
(Derive CAS)

Mars Pathfinder planner

Learn to think and program functionally and symbolically.

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 49 / 50

https://franz.com/success/customer_apps/scheduling/nasa.app.pdf

Higher-order Functions

Dijkstra on Lisp

“LISP has jokingly been described as ‘the most intelligent way to misuse a computer’. I
think that description a great compliment because it transmits the full flavour of libera-
tion: it has assisted a number of our most gifted fellow humans in thinking previously

impossible thoughts.” [emphasis added]
https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

Dantam (Mines CSCI-561) L03: Functional Programming in Lisp (Pre Lecture) Fall 2025 50 / 50

https://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

	Recursion
	First-Class Functions
	Higher-order Functions

